Nuprl Lemma : agree_on_common_nil
∀[T:Type]. ∀as:T List. (agree_on_common(T;as;[]) 
⇐⇒ True)
Proof
Definitions occuring in Statement : 
agree_on_common: agree_on_common(T;as;bs)
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
agree_on_common: agree_on_common(T;as;bs)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
true: True
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
iff_wf, 
agree_on_common_wf, 
nil_wf, 
true_wf, 
list_ind_nil_lemma, 
istype-void, 
list_ind_cons_lemma, 
istype-universe, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
because_Cache, 
hypothesis, 
universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
natural_numberEquality, 
rename, 
productElimination, 
productIsType, 
functionIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}as:T  List.  (agree\_on\_common(T;as;[])  \mLeftarrow{}{}\mRightarrow{}  True)
Date html generated:
2019_10_15-AM-10_53_05
Last ObjectModification:
2018_10_09-AM-10_31_08
Theory : list!
Home
Index