Nuprl Lemma : causal_order_or

[T:Type]
  ∀L:T List
    ∀[R:ℕ||L|| ⟶ ℕ||L|| ⟶ ℙ]. ∀[P1,P2,P3:ℕ||L|| ⟶ ℙ].
      (Trans(ℕ||L||)(R _1 _2)
       causal_order(L;R;P1;P2)
       causal_order(L;R;P1;P3)
       causal_order(L;R;P1;λi.((P2 i) ∨ (P3 i))))


Proof




Definitions occuring in Statement :  causal_order: causal_order(L;R;P;Q) length: ||as|| list: List trans: Trans(T;x,y.E[x; y]) int_seg: {i..j-} uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q or: P ∨ Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  causal_order: causal_order(L;R;P;Q) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q member: t ∈ T exists: x:A. B[x] and: P ∧ Q cand: c∧ B prop: int_seg: {i..j-} subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  le_wf or_wf int_seg_wf length_wf all_wf exists_wf subtype_rel_self trans_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation sqequalHypSubstitution unionElimination thin cut hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination productElimination dependent_pairFormation independent_pairFormation productEquality introduction extract_by_obid isectElimination setElimination rename applyEquality because_Cache natural_numberEquality lambdaEquality functionEquality instantiate universeEquality inhabitedIsType functionIsType universeIsType

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[R:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P1,P2,P3:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].
            (Trans(\mBbbN{}||L||)(R  $_{1}$  $_{2}$)
            {}\mRightarrow{}  causal\_order(L;R;P1;P2)
            {}\mRightarrow{}  causal\_order(L;R;P1;P3)
            {}\mRightarrow{}  causal\_order(L;R;P1;\mlambda{}i.((P2  i)  \mvee{}  (P3  i))))



Date html generated: 2019_10_15-AM-10_57_37
Last ObjectModification: 2018_09_27-AM-09_52_39

Theory : list!


Home Index