Nuprl Lemma : comb_for_ifthenelse_wf

λb,A,p,q,z. if then else fi  ∈ b:𝔹 ⟶ A:Type ⟶ p:A ⟶ q:A ⟶ (↓True) ⟶ A


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  bool: 𝔹 squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  ifthenelse_wf squash_wf true_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality

Latex:
\mlambda{}b,A,p,q,z.  if  b  then  p  else  q  fi    \mmember{}  b:\mBbbB{}  {}\mrightarrow{}  A:Type  {}\mrightarrow{}  p:A  {}\mrightarrow{}  q:A  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  A



Date html generated: 2018_05_21-PM-06_20_14
Last ObjectModification: 2018_05_19-PM-05_32_21

Theory : list!


Home Index