Nuprl Lemma : comb_for_ifthenelse_wf
λb,A,p,q,z. if b then p else q fi  ∈ b:𝔹 ⟶ A:Type ⟶ p:A ⟶ q:A ⟶ (↓True) ⟶ A
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
ifthenelse_wf, 
squash_wf, 
true_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality
Latex:
\mlambda{}b,A,p,q,z.  if  b  then  p  else  q  fi    \mmember{}  b:\mBbbB{}  {}\mrightarrow{}  A:Type  {}\mrightarrow{}  p:A  {}\mrightarrow{}  q:A  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  A
Date html generated:
2018_05_21-PM-06_20_14
Last ObjectModification:
2018_05_19-PM-05_32_21
Theory : list!
Home
Index