Nuprl Lemma : comb_for_interleaving_wf
λT,L1,L2,L,z. interleaving(T;L1;L2;L) ∈ T:Type ⟶ L1:(T List) ⟶ L2:(T List) ⟶ L:(T List) ⟶ (↓True) ⟶ ℙ
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L)
, 
list: T List
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
interleaving_wf, 
squash_wf, 
true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
universeEquality
Latex:
\mlambda{}T,L1,L2,L,z.  interleaving(T;L1;L2;L)  \mmember{}  T:Type  {}\mrightarrow{}  L1:(T  List)  {}\mrightarrow{}  L2:(T  List)  {}\mrightarrow{}  L:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True\000C)  {}\mrightarrow{}  \mBbbP{}
Date html generated:
2019_10_15-AM-10_55_35
Last ObjectModification:
2018_10_09-AM-10_18_18
Theory : list!
Home
Index