Nuprl Lemma : comb_for_interleaving_wf

λT,L1,L2,L,z. interleaving(T;L1;L2;L) ∈ T:Type ⟶ L1:(T List) ⟶ L2:(T List) ⟶ L:(T List) ⟶ (↓True) ⟶ ℙ


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) list: List prop: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  interleaving_wf squash_wf true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType inhabitedIsType universeEquality

Latex:
\mlambda{}T,L1,L2,L,z.  interleaving(T;L1;L2;L)  \mmember{}  T:Type  {}\mrightarrow{}  L1:(T  List)  {}\mrightarrow{}  L2:(T  List)  {}\mrightarrow{}  L:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True\000C)  {}\mrightarrow{}  \mBbbP{}



Date html generated: 2019_10_15-AM-10_55_35
Last ObjectModification: 2018_10_09-AM-10_18_18

Theory : list!


Home Index