Nuprl Lemma : comb_for_l_member_wf

λT,x,l,z. (x ∈ l) ∈ T:Type ⟶ x:T ⟶ l:(T List) ⟶ (↓True) ⟶ ℙ


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List prop: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  l_member_wf squash_wf true_wf list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType universeEquality

Latex:
\mlambda{}T,x,l,z.  (x  \mmember{}  l)  \mmember{}  T:Type  {}\mrightarrow{}  x:T  {}\mrightarrow{}  l:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}



Date html generated: 2019_10_15-AM-10_52_57
Last ObjectModification: 2018_10_09-AM-10_31_09

Theory : list!


Home Index