Nuprl Lemma : comb_for_l_succ_wf
λT,l,x,P,z. y = succ(x) in l
⇒ P[y] ∈ T:Type ⟶ l:(T List) ⟶ x:T ⟶ P:(T ⟶ ℙ) ⟶ (↓True) ⟶ ℙ
Proof
Definitions occuring in Statement : 
l_succ: l_succ, 
list: T List
, 
prop: ℙ
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
l_succ_wf, 
squash_wf, 
true_wf, 
istype-universe, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
functionIsType, 
inhabitedIsType, 
universeEquality
Latex:
\mlambda{}T,l,x,P,z.  y  =  succ(x)  in  l{}\mRightarrow{}  P[y]  \mmember{}  T:Type  {}\mrightarrow{}  l:(T  List)  {}\mrightarrow{}  x:T  {}\mrightarrow{}  P:(T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}
Date html generated:
2019_10_15-AM-10_53_16
Last ObjectModification:
2018_10_09-AM-10_31_07
Theory : list!
Home
Index