Nuprl Lemma : comb_for_l_succ_wf

λT,l,x,P,z. succ(x) in l P[y] ∈ T:Type ⟶ l:(T List) ⟶ x:T ⟶ P:(T ⟶ ℙ) ⟶ (↓True) ⟶ ℙ


Proof




Definitions occuring in Statement :  l_succ: l_succ list: List prop: so_apply: x[s] squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  l_succ_wf squash_wf true_wf istype-universe list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType functionIsType inhabitedIsType universeEquality

Latex:
\mlambda{}T,l,x,P,z.  y  =  succ(x)  in  l{}\mRightarrow{}  P[y]  \mmember{}  T:Type  {}\mrightarrow{}  l:(T  List)  {}\mrightarrow{}  x:T  {}\mrightarrow{}  P:(T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}



Date html generated: 2019_10_15-AM-10_53_16
Last ObjectModification: 2018_10_09-AM-10_31_07

Theory : list!


Home Index