Nuprl Lemma : comb_for_reduce2_wf
λA,T,L,k,i,f,z. reduce2(f;k;i;L) ∈ A:Type ⟶ T:Type ⟶ L:(T List) ⟶ k:A ⟶ i:ℕ ⟶ f:(T ⟶ {i..i + ||L||-} ⟶ A ⟶ A) ⟶\000C (↓True) ⟶ A
Proof
Definitions occuring in Statement : 
reduce2: reduce2(f;k;i;as), 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
nat: ℕ, 
squash: ↓T, 
true: True, 
member: t ∈ T, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
add: n + m, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T, 
squash: ↓T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
nat: ℕ
Lemmas referenced : 
reduce2_wf, 
squash_wf, 
true_wf, 
istype-universe, 
int_seg_wf, 
length_wf, 
nat_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
functionIsType, 
setElimination, 
rename, 
addEquality, 
because_Cache, 
inhabitedIsType, 
universeEquality
Latex:
\mlambda{}A,T,L,k,i,f,z.  reduce2(f;k;i;L)  \mmember{}  A:Type
{}\mrightarrow{}  T:Type
{}\mrightarrow{}  L:(T  List)
{}\mrightarrow{}  k:A
{}\mrightarrow{}  i:\mBbbN{}
{}\mrightarrow{}  f:(T  {}\mrightarrow{}  \{i..i  +  ||L||\msupminus{}\}  {}\mrightarrow{}  A  {}\mrightarrow{}  A)
{}\mrightarrow{}  (\mdownarrow{}True)
{}\mrightarrow{}  A
Date html generated:
2019_10_15-AM-10_54_55
Last ObjectModification:
2018_10_09-AM-10_21_31
Theory : list!
Home
Index