Nuprl Lemma : same_order_wf
∀[T:Type]. ∀[L:T List]. ∀[x1,x2,y1,y2:T].  (same_order(x1;y1;x2;y2;L;T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
same_order: same_order(x1;y1;x2;y2;L;T)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
same_order: same_order(x1;y1;x2;y2;L;T)
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
strong_before_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality, 
because_Cache, 
universeIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x1,x2,y1,y2:T].    (same\_order(x1;y1;x2;y2;L;T)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_15-AM-10_53_15
Last ObjectModification:
2018_09_27-AM-09_37_34
Theory : list!
Home
Index