Nuprl Lemma : same_order_wf

[T:Type]. ∀[L:T List]. ∀[x1,x2,y1,y2:T].  (same_order(x1;y1;x2;y2;L;T) ∈ ℙ)


Proof




Definitions occuring in Statement :  same_order: same_order(x1;y1;x2;y2;L;T) list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T same_order: same_order(x1;y1;x2;y2;L;T) implies:  Q prop:
Lemmas referenced :  strong_before_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality because_Cache universeIsType universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x1,x2,y1,y2:T].    (same\_order(x1;y1;x2;y2;L;T)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_15-AM-10_53_15
Last ObjectModification: 2018_09_27-AM-09_37_34

Theory : list!


Home Index