Nuprl Lemma : swap_length

[T:Type]. ∀[L:T List]. ∀[i,j:ℕ||L||].  (||swap(L;i;j)|| ||L|| ∈ ℤ)


Proof




Definitions occuring in Statement :  swap: swap(L;i;j) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  swap: swap(L;i;j) uall: [x:A]. B[x] member: t ∈ T top: Top
Lemmas referenced :  permute_list_length length_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis natural_numberEquality axiomEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i,j:\mBbbN{}||L||].    (||swap(L;i;j)||  =  ||L||)



Date html generated: 2016_05_15-PM-02_04_13
Last ObjectModification: 2015_12_27-AM-00_22_12

Theory : list!


Home Index