Nuprl Lemma : swap_length
∀[T:Type]. ∀[L:T List]. ∀[i,j:ℕ||L||].  (||swap(L;i;j)|| = ||L|| ∈ ℤ)
Proof
Definitions occuring in Statement : 
swap: swap(L;i;j)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
swap: swap(L;i;j)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
permute_list_length, 
length_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
natural_numberEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i,j:\mBbbN{}||L||].    (||swap(L;i;j)||  =  ||L||)
Date html generated:
2016_05_15-PM-02_04_13
Last ObjectModification:
2015_12_27-AM-00_22_12
Theory : list!
Home
Index