Nuprl Lemma : A-bind_wf2

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].
  (A-bind(array-model(AType)) ∈ ⋂T,S:Type.  ((A-map T) ⟶ (T ⟶ (A-map S)) ⟶ (A-map S)))


Proof




Definitions occuring in Statement :  A-bind: A-bind(AModel) A-map: A-map array-model: array-model(AType) array: array{i:l}(Val;n) nat: uall: [x:A]. B[x] member: t ∈ T apply: a isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  array_wf nat_wf A-bind_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].
    (A-bind(array-model(AType))  \mmember{}  \mcap{}T,S:Type.    ((A-map  T)  {}\mrightarrow{}  (T  {}\mrightarrow{}  (A-map  S))  {}\mrightarrow{}  (A-map  S)))



Date html generated: 2016_05_15-PM-02_18_30
Last ObjectModification: 2015_12_27-AM-08_58_48

Theory : monads


Home Index