Nuprl Lemma : A-post-val_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[prog:A-map Unit]. ∀[A:Arr(AType)]. ∀[i:ℕn].
  (A-post-val(AType;prog;A;i) ∈ Val)
Proof
Definitions occuring in Statement : 
A-post-val: A-post-val(AType;prog;A;i)
, 
A-map: A-map
, 
array-model: array-model(AType)
, 
Arr: Arr(AType)
, 
array: array{i:l}(Val;n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
A-post-val: A-post-val(AType;prog;A;i)
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
int_seg_wf, 
Arr_wf, 
A-map_wf, 
unit_wf2, 
array_wf, 
nat_wf, 
A-eval_wf, 
A-coerce_wf, 
A-map'_wf, 
A-fetch'_wf, 
A-bind_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
applyEquality, 
universeEquality, 
lambdaEquality, 
isectEquality, 
cumulativity, 
functionEquality
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[prog:A-map  Unit].  \mforall{}[A:Arr(AType)].  \mforall{}[i:\mBbbN{}n].
    (A-post-val(AType;prog;A;i)  \mmember{}  Val)
Date html generated:
2016_05_15-PM-02_19_11
Last ObjectModification:
2015_12_27-AM-08_58_28
Theory : monads
Home
Index