Nuprl Definition : A-shift-spec
A-shift-spec(AType; Val; n; prog) ==
  ∀A:Arr(AType). ∀i:ℕn.
    ((i < n - 2 ⇒ (A-post-val(AType;prog;A;i) = A-pre-val(AType;A;i + 1) ∈ Val))
    ∧ (A-post-val(AType;prog;A;n - 1) = A-pre-val(AType;A;0) ∈ Val))
Definitions occuring in Statement : 
A-post-val: A-post-val(AType;prog;A;i), 
Arr: Arr(AType), 
A-pre-val: A-pre-val(AType;A;i), 
int_seg: {i..j-}, 
less_than: a < b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
equal: s = t ∈ T
Definitions occuring in definition : 
Arr: Arr(AType), 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
and: P ∧ Q, 
implies: P ⇒ Q, 
less_than: a < b, 
add: n + m, 
equal: s = t ∈ T, 
A-post-val: A-post-val(AType;prog;A;i), 
subtract: n - m, 
A-pre-val: A-pre-val(AType;A;i), 
natural_number: $n
Latex:
A-shift-spec(AType;  Val;  n;  prog)  ==
    \mforall{}A:Arr(AType).  \mforall{}i:\mBbbN{}n.
        ((i  <  n  -  2  {}\mRightarrow{}  (A-post-val(AType;prog;A;i)  =  A-pre-val(AType;A;i  +  1)))
        \mwedge{}  (A-post-val(AType;prog;A;n  -  1)  =  A-pre-val(AType;A;0)))
Date html generated:
2016_05_15-PM-02_21_06
Last ObjectModification:
2015_09_23-AM-07_38_52
Theory : monads
Home
Index