Nuprl Lemma : simple-swap2_wf
∀[n:ℕ]. ∀[AType:array{i:l}(ℤ;n)]. ∀[i,j:ℕn].  (simple-swap2(array-model(AType);i;j) ∈ A-map Unit)
Proof
Definitions occuring in Statement : 
simple-swap2: simple-swap2(AModel;i;j), 
A-map: A-map, 
array-model: array-model(AType), 
array: array{i:l}(Val;n), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
unit: Unit, 
member: t ∈ T, 
apply: f a, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
simple-swap2: simple-swap2(AModel;i;j), 
array-model: array-model(AType), 
A-bind: A-bind(AModel), 
A-fetch: A-fetch(AModel), 
A-map: A-map, 
pi2: snd(t), 
pi1: fst(t), 
M-map: M-map(mnd), 
array-monad: array-monad(AType), 
M-bind: M-bind(Mnd), 
M-return: M-return(Mnd), 
A-coerce: A-coerce(AModel), 
let: let, 
Arr: Arr(AType), 
mk_monad: mk_monad(M;return;bind), 
idx: idx(AType), 
upd: upd(AType), 
A-assign: A-assign(AModel), 
A-fetch': A-fetch'(AModel), 
array: array{i:l}(Val;n), 
nat: ℕ
Lemmas referenced : 
it_wf, 
int_seg_wf, 
array_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lambdaEquality, 
independent_pairEquality, 
lemma_by_obid, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
isect_memberEquality, 
because_Cache, 
intEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(\mBbbZ{};n)].  \mforall{}[i,j:\mBbbN{}n].    (simple-swap2(array-model(AType);i;j)  \mmember{}  A-map  Unit)
Date html generated:
2016_05_15-PM-02_20_33
Last ObjectModification:
2015_12_27-AM-08_58_06
Theory : monads
Home
Index