Nuprl Lemma : fps-atom_wf
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X].  (atom(x) ∈ PowerSeries(X;r))
Proof
Definitions occuring in Statement : 
fps-atom: atom(x), 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
fps-atom: atom(x), 
all: ∀x:A. B[x]
Lemmas referenced : 
fps-single_wf, 
single-bag_wf, 
crng_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].    (atom(x)  \mmember{}  PowerSeries(X;r))
 Date html generated: 
2016_05_15-PM-09_47_27
 Last ObjectModification: 
2015_12_27-PM-04_40_56
Theory : power!series
Home
Index