Nuprl Lemma : nullset-monotone
∀p:FinProbSpace. ∀[P,Q:(ℕ ⟶ Outcome) ⟶ ℙ].  ((∀s:ℕ ⟶ Outcome. (Q[s] ⇒ P[s])) ⇒ nullset(p;P) ⇒ nullset(p;Q))
Proof
Definitions occuring in Statement : 
nullset: nullset(p;S), 
p-outcome: Outcome, 
finite-prob-space: FinProbSpace, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
nullset: nullset(p;S), 
member: t ∈ T, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
so_apply: x[s], 
prop: ℙ, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_wf, 
p-outcome_wf, 
all_wf, 
p-open-member_wf, 
p-measure-le_wf, 
rationals_wf, 
qless_wf, 
int-subtype-rationals, 
nullset_wf, 
finite-prob-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation, 
promote_hyp, 
independent_functionElimination, 
because_Cache, 
applyEquality, 
functionEquality, 
lemma_by_obid, 
isectElimination, 
productEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}p:FinProbSpace
    \mforall{}[P,Q:(\mBbbN{}  {}\mrightarrow{}  Outcome)  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}s:\mBbbN{}  {}\mrightarrow{}  Outcome.  (Q[s]  {}\mRightarrow{}  P[s]))  {}\mRightarrow{}  nullset(p;P)  {}\mRightarrow{}  nullset(p;Q))
Date html generated:
2016_05_15-PM-11_50_35
Last ObjectModification:
2015_12_28-PM-07_14_34
Theory : randomness
Home
Index