Nuprl Lemma : rv-disjoint-const
∀p:FinProbSpace. ∀n:ℕ. ∀X:RandomVariable(p;n). ∀a:ℚ.  rv-disjoint(p;n;a;X)
Proof
Definitions occuring in Statement : 
rv-disjoint: rv-disjoint(p;n;X;Y), 
rv-const: a, 
random-variable: RandomVariable(p;n), 
finite-prob-space: FinProbSpace, 
rationals: ℚ, 
nat: ℕ, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
rv-disjoint: rv-disjoint(p;n;X;Y), 
or: P ∨ Q, 
implies: P ⇒ Q, 
rv-const: a, 
prop: ℙ, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
so_apply: x[s], 
random-variable: RandomVariable(p;n), 
subtype_rel: A ⊆r B, 
p-outcome: Outcome
Lemmas referenced : 
rationals_wf, 
random-variable_wf, 
nat_wf, 
finite-prob-space_wf, 
all_wf, 
int_seg_wf, 
not_wf, 
equal_wf, 
p-outcome_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
inlFormation, 
sqequalRule, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaEquality, 
functionEquality, 
intEquality, 
applyEquality, 
functionExtensionality, 
because_Cache
Latex:
\mforall{}p:FinProbSpace.  \mforall{}n:\mBbbN{}.  \mforall{}X:RandomVariable(p;n).  \mforall{}a:\mBbbQ{}.    rv-disjoint(p;n;a;X)
Date html generated:
2018_05_22-AM-00_35_16
Last ObjectModification:
2017_07_26-PM-07_00_06
Theory : randomness
Home
Index