Nuprl Lemma : rv-disjoint-rv-add
∀p:FinProbSpace. ∀n:ℕ. ∀X,Y,Z:RandomVariable(p;n).
  (rv-disjoint(p;n;X;Y) ⇒ rv-disjoint(p;n;X;Z) ⇒ rv-disjoint(p;n;X;Y + Z))
Proof
Definitions occuring in Statement : 
rv-disjoint: rv-disjoint(p;n;X;Y), 
rv-add: X + Y, 
random-variable: RandomVariable(p;n), 
finite-prob-space: FinProbSpace, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rv-disjoint: rv-disjoint(p;n;X;Y), 
member: t ∈ T, 
or: P ∨ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
random-variable: RandomVariable(p;n), 
p-outcome: Outcome, 
guard: {T}, 
rv-add: X + Y, 
squash: ↓T, 
true: True, 
nat: ℕ
Lemmas referenced : 
all_wf, 
p-outcome_wf, 
not_wf, 
equal_wf, 
rationals_wf, 
rv-add_wf, 
qadd_wf, 
int_seg_wf, 
rv-disjoint_wf, 
random-variable_wf, 
nat_wf, 
finite-prob-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
unionElimination, 
inlFormation, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
sqequalRule, 
lambdaEquality, 
intEquality, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
inrFormation, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}p:FinProbSpace.  \mforall{}n:\mBbbN{}.  \mforall{}X,Y,Z:RandomVariable(p;n).
    (rv-disjoint(p;n;X;Y)  {}\mRightarrow{}  rv-disjoint(p;n;X;Z)  {}\mRightarrow{}  rv-disjoint(p;n;X;Y  +  Z))
Date html generated:
2018_05_22-AM-00_35_08
Last ObjectModification:
2017_07_26-PM-07_00_02
Theory : randomness
Home
Index