Nuprl Lemma : ws_single_lemma
∀F,p:Top.  (weighted-sum([p];F) ~ 0 + ((F 0) * p))
Proof
Definitions occuring in Statement : 
weighted-sum: weighted-sum(p;F), 
qmul: r * s, 
qadd: r + s, 
cons: [a / b], 
nil: [], 
top: Top, 
all: ∀x:A. B[x], 
apply: f a, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
weighted-sum: weighted-sum(p;F), 
qsum: Σa ≤ j < b. E[j], 
rng_sum: rng_sum, 
mon_itop: Π lb ≤ i < ub. E[i], 
itop: Π(op,id) lb ≤ i < ub. E[i], 
ycomb: Y, 
top: Top, 
add_grp_of_rng: r↓+gp, 
grp_op: *, 
pi2: snd(t), 
pi1: fst(t), 
grp_id: e, 
qrng: <ℚ+*>, 
rng_plus: +r, 
rng_zero: 0, 
lt_int: i <z j, 
infix_ap: x f y, 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
select: L[n], 
cons: [a / b], 
bfalse: ff
Lemmas referenced : 
top_wf, 
length_of_cons_lemma, 
length_of_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}F,p:Top.    (weighted-sum([p];F)  \msim{}  0  +  ((F  0)  *  p))
Date html generated:
2016_05_15-PM-11_45_12
Last ObjectModification:
2015_12_28-PM-07_16_42
Theory : randomness
Home
Index