Nuprl Lemma : better-q-elim
∀r:ℚ. ∃p:ℤ. ∃q:ℕ+. ((¬(q = 0 ∈ ℚ)) c∧ (r = (p/q) ∈ ℚ))
Proof
Definitions occuring in Statement : 
qdiv: (r/s)
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Lemmas referenced : 
q-elim
Rules used in proof : 
cut, 
lemma_by_obid, 
hypothesis
Latex:
\mforall{}r:\mBbbQ{}.  \mexists{}p:\mBbbZ{}.  \mexists{}q:\mBbbN{}\msupplus{}.  ((\mneg{}(q  =  0))  c\mwedge{}  (r  =  (p/q)))
Date html generated:
2016_05_15-PM-10_39_54
Last ObjectModification:
2015_12_27-PM-07_58_40
Theory : rationals
Home
Index