Nuprl Lemma : qge_wf
∀[a,b:ℚ]. (a ≥ b ∈ ℙ)
Proof
Definitions occuring in Statement :
qge: a ≥ b
,
rationals: ℚ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
qge: a ≥ b
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
qle_wf,
rationals_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[a,b:\mBbbQ{}]. (a \mgeq{} b \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-10_45_38
Last ObjectModification:
2015_12_27-PM-07_53_19
Theory : rationals
Home
Index