Nuprl Lemma : qmul_assoc_qrng
∀[a,b,c:ℚ].  ((a * b * c) = ((a * b) * c) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qmul: r * s, 
rationals: ℚ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
qrng: <ℚ+*>, 
rng_car: |r|, 
pi1: fst(t), 
rng_times: *, 
pi2: snd(t), 
infix_ap: x f y
Lemmas referenced : 
rng_times_assoc, 
qrng_wf, 
crng_subtype_rng
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
sqequalRule
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    ((a  *  b  *  c)  =  ((a  *  b)  *  c))
Date html generated:
2020_05_20-AM-09_15_33
Last ObjectModification:
2020_02_04-PM-01_49_40
Theory : rationals
Home
Index