Nuprl Definition : adjunction-monad
adjMonad(adj) == mk-monad(functor-comp(F;G);snd(adj);x |→ G (F (G (F x))) (F x) ((fst(adj)) (F x)))
Definitions occuring in Statement :
mk-monad: mk-monad,
functor-comp: functor-comp(F;G)
,
mk-nat-trans: x |→ T[x]
,
functor-arrow: arrow(F)
,
functor-ob: ob(F)
,
pi1: fst(t)
,
pi2: snd(t)
,
apply: f a
Definitions occuring in definition :
mk-monad: mk-monad,
functor-comp: functor-comp(F;G)
,
pi2: snd(t)
,
mk-nat-trans: x |→ T[x]
,
functor-arrow: arrow(F)
,
pi1: fst(t)
,
apply: f a
,
functor-ob: ob(F)
FDL editor aliases :
adjunction-monad
Latex:
adjMonad(adj) == mk-monad(functor-comp(F;G);snd(adj);x |\mrightarrow{} G (F (G (F x))) (F x) ((fst(adj)) (F x)))
Date html generated:
2020_05_20-AM-07_59_26
Last ObjectModification:
2017_01_17-AM-00_18_57
Theory : small!categories
Home
Index