Nuprl Definition : adjunction-monad
adjMonad(adj) ==  mk-monad(functor-comp(F;G);snd(adj);x |→ G (F (G (F x))) (F x) ((fst(adj)) (F x)))
Definitions occuring in Statement : 
mk-monad: mk-monad, 
functor-comp: functor-comp(F;G)
, 
mk-nat-trans: x |→ T[x]
, 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
apply: f a
Definitions occuring in definition : 
mk-monad: mk-monad, 
functor-comp: functor-comp(F;G)
, 
pi2: snd(t)
, 
mk-nat-trans: x |→ T[x]
, 
functor-arrow: arrow(F)
, 
pi1: fst(t)
, 
apply: f a
, 
functor-ob: ob(F)
FDL editor aliases : 
adjunction-monad
Latex:
adjMonad(adj)  ==    mk-monad(functor-comp(F;G);snd(adj);x  |\mrightarrow{}  G  (F  (G  (F  x)))  (F  x)  ((fst(adj))  (F  x)))
Date html generated:
2020_05_20-AM-07_59_26
Last ObjectModification:
2017_01_17-AM-00_18_57
Theory : small!categories
Home
Index