Nuprl Lemma : ap_mk_nat_trans_lemma
∀z,T:Top. (b |→ T[b] z ~ T[z])
Proof
Definitions occuring in Statement :
mk-nat-trans: x |→ T[x]
,
top: Top
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
apply: f a
,
sqequal: s ~ t
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
mk-nat-trans: x |→ T[x]
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
hypothesis,
introduction,
extract_by_obid,
sqequalRule
Latex:
\mforall{}z,T:Top. (b |\mrightarrow{} T[b] z \msim{} T[z])
Date html generated:
2020_05_20-AM-07_51_32
Last ObjectModification:
2017_01_10-PM-04_45_24
Theory : small!categories
Home
Index