Nuprl Lemma : cat-final-isomorphic
∀[C:SmallCategory]. ∀fnl1,fnl2:cat-ob(C). (Final(fnl1)
⇒ Final(fnl2)
⇒ cat-isomorphic(C;fnl1;fnl2))
Proof
Definitions occuring in Statement :
cat-final: Final(fnl)
,
cat-isomorphic: cat-isomorphic(C;x;y)
,
cat-ob: cat-ob(C)
,
small-category: SmallCategory
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
cat-final: Final(fnl)
,
member: t ∈ T
,
and: P ∧ Q
,
cat-isomorphic: cat-isomorphic(C;x;y)
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
cat-isomorphism: cat-isomorphism(C;x;y;f)
,
cand: A c∧ B
,
cat-inverse: fg=1
,
guard: {T}
Lemmas referenced :
cat-isomorphism_wf,
cat-final_wf,
cat-ob_wf,
small-category_wf,
cat-inverse_wf,
cat-comp_wf,
cat-id_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
hypothesis,
addLevel,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
productElimination,
rename,
dependent_pairFormation,
introduction,
extract_by_obid,
levelHypothesis,
independent_pairFormation,
productEquality,
applyEquality
Latex:
\mforall{}[C:SmallCategory]
\mforall{}fnl1,fnl2:cat-ob(C). (Final(fnl1) {}\mRightarrow{} Final(fnl2) {}\mRightarrow{} cat-isomorphic(C;fnl1;fnl2))
Date html generated:
2020_05_20-AM-07_50_41
Last ObjectModification:
2017_01_09-AM-10_06_50
Theory : small!categories
Home
Index