Nuprl Lemma : beta_expansion

[F,v:Top].  (F[v] x.F[x]) v)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top so_apply: x[s] apply: a lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom lemma_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[F,v:Top].    (F[v]  \msim{}  (\mlambda{}x.F[x])  v)



Date html generated: 2016_05_15-PM-02_07_42
Last ObjectModification: 2015_12_27-AM-00_37_15

Theory : untyped!computation


Home Index