Nuprl Lemma : beta_expansion
∀[F,v:Top].  (F[v] ~ (λx.F[x]) v)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
apply: f a
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[F,v:Top].    (F[v]  \msim{}  (\mlambda{}x.F[x])  v)
Date html generated:
2016_05_15-PM-02_07_42
Last ObjectModification:
2015_12_27-AM-00_37_15
Theory : untyped!computation
Home
Index