Nuprl Lemma : decide-ifthenelse

[b,f1,f2,x,y:Top].
  (case if then else fi  of inl(z) => f1[z] inr(z) => f2[z] if b
  then case of inl(z) => f1[z] inr(z) => f2[z]
  else case of inl(z) => f1[z] inr(z) => f2[z]
  fi )


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top so_apply: x[s] decide: case of inl(x) => s[x] inr(y) => t[y] sqequal: t
Definitions unfolded in proof :  ifthenelse: if then else fi  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] top: Top so_apply: x[s]
Lemmas referenced :  lifting-decide-decide top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis because_Cache isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[b,f1,f2,x,y:Top].
    (case  if  b  then  x  else  y  fi    of  inl(z)  =>  f1[z]  |  inr(z)  =>  f2[z]  \msim{}  if  b
    then  case  x  of  inl(z)  =>  f1[z]  |  inr(z)  =>  f2[z]
    else  case  y  of  inl(z)  =>  f1[z]  |  inr(z)  =>  f2[z]
    fi  )



Date html generated: 2016_05_15-PM-02_16_02
Last ObjectModification: 2015_12_27-AM-00_31_57

Theory : untyped!computation


Home Index