Nuprl Lemma : decide-ifthenelse
∀[b,f1,f2,x,y:Top].
  (case if b then x else y fi  of inl(z) => f1[z] | inr(z) => f2[z] ~ if b
  then case x of inl(z) => f1[z] | inr(z) => f2[z]
  else case y of inl(z) => f1[z] | inr(z) => f2[z]
  fi )
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
Lemmas referenced : 
lifting-decide-decide, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[b,f1,f2,x,y:Top].
    (case  if  b  then  x  else  y  fi    of  inl(z)  =>  f1[z]  |  inr(z)  =>  f2[z]  \msim{}  if  b
    then  case  x  of  inl(z)  =>  f1[z]  |  inr(z)  =>  f2[z]
    else  case  y  of  inl(z)  =>  f1[z]  |  inr(z)  =>  f2[z]
    fi  )
Date html generated:
2016_05_15-PM-02_16_02
Last ObjectModification:
2015_12_27-AM-00_31_57
Theory : untyped!computation
Home
Index