Nuprl Lemma : mk_lambdas_fun-eta
∀[F:Top]. ∀[m:ℕ].  (mk_lambdas_fun(F;m) ~ mk_lambdas_fun(λg.(F (λx.(g x)));m))
Proof
Definitions occuring in Statement : 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
top: Top
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
mk_applies: mk_applies(F;G;m)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
mk_lambdas-fun-eta, 
false_wf, 
le_wf, 
primrec0_lemma, 
nat_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[F:Top].  \mforall{}[m:\mBbbN{}].    (mk\_lambdas\_fun(F;m)  \msim{}  mk\_lambdas\_fun(\mlambda{}g.(F  (\mlambda{}x.(g  x)));m))
Date html generated:
2016_05_15-PM-02_10_55
Last ObjectModification:
2015_12_27-AM-00_35_05
Theory : untyped!computation
Home
Index