Nuprl Lemma : mk_lambdas_fun-eta

[F:Top]. ∀[m:ℕ].  (mk_lambdas_fun(F;m) mk_lambdas_fun(λg.(F x.(g x)));m))


Proof




Definitions occuring in Statement :  mk_lambdas_fun: mk_lambdas_fun(F;m) nat: uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk_lambdas_fun: mk_lambdas_fun(F;m) top: Top nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: mk_applies: mk_applies(F;G;m) all: x:A. B[x]
Lemmas referenced :  mk_lambdas-fun-eta false_wf le_wf primrec0_lemma nat_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis dependent_functionElimination sqequalAxiom because_Cache

Latex:
\mforall{}[F:Top].  \mforall{}[m:\mBbbN{}].    (mk\_lambdas\_fun(F;m)  \msim{}  mk\_lambdas\_fun(\mlambda{}g.(F  (\mlambda{}x.(g  x)));m))



Date html generated: 2016_05_15-PM-02_10_55
Last ObjectModification: 2015_12_27-AM-00_35_05

Theory : untyped!computation


Home Index