Nuprl Lemma : strictness-concat

concat(⊥~ ⊥


Proof




Definitions occuring in Statement :  concat: concat(ll) bottom: sqequal: t
Definitions unfolded in proof :  concat: concat(ll) reduce: reduce(f;k;as) list_ind: list_ind append: as bs cons: [a b] nil: [] it: uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T top: Top so_apply: x[s]
Lemmas referenced :  strictness-callbyvalue
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
concat(\mbot{})  \msim{}  \mbot{}



Date html generated: 2016_05_15-PM-02_07_36
Last ObjectModification: 2015_12_27-AM-00_37_21

Theory : untyped!computation


Home Index