Logical Investigations, with the Nuprl Proof Assistant
Table of Contents
Theorem 13: ((∼P) ∧ (∼Q)) ⇒ ∼(P ∨ Q)
∀[P,Q:ℙ].(((¬P) ∧ (¬Q)) ⇒ (¬(P ∨ Q)))
Extract: λf,g. let np,nq = f in case g of inl(p) => np p | inr(q) => nq q
where f : (¬P) ∧ (¬Q)
g : P ∨ Q
np : ¬P ≡ (P ⇒ False)
nq : ¬Q ≡ (Q ⇒ False)
p : P
q : Q
Nuprl Proof
⊢ ∀[P,Q:ℙ]. (((¬P) ∧ (¬Q)) ⇒ (¬(P ∨ Q)))
|
BY RepeatFor 2 ((UD THENA Auto))
|
[1]. P: ℙ
[2]. Q: ℙ
⊢ ((¬P) ∧ (¬Q)) ⇒ (¬(P ∨ Q))
|
BY RepeatFor 2 ((D 0 THENA Auto)) ⇒ Construction rule, 2 times
|
3. (¬P) ∧ (¬Q)
4. P ∨ Q
⊢ False
|
BY D 3 ∧ Application rule on ((¬P) ∧ (¬Q))
|
3. ¬P
4. ¬Q
5. P ∨ Q
⊢ False
|
BY D 5 ∨ Application rule on (P ∨ Q)
|\
| 5. P
| ⊢ False Subgoal 1: Show False, assuming P
| |
1 BY (Unfold `not` 3 THEN D 3) ⇒ Application rule on (P ⇒ False)
| |\
| | 3. ¬Q
| | 4. P
| | ⊢ P Subgoal 1.1: Prove P
| | |
1 2 BY NthHyp 4 Hypothesis rule
| \
| 3. ¬Q
| 4. P
| 5. False
| ⊢ False Subgoal 1.2: Show False, with assumption of False now available
| |
1 BY NthHyp 5 Hypothesis rule
\
5. Q
⊢ False Subgoal 2: Show False, assuming Q
|
BY (Unfold `not` 4 THEN D 4) ⇒ Application rule on (Q ⇒ False)
|\
| 4. Q
| ⊢ Q Subgoal 2.1: Prove Q
| |
1 BY NthHyp 4 Hypothesis rule
\
4. Q
5. False
⊢ False Subgoal 2.2: Show False, with assumption of False now available
|
BY NthHyp 5 Hypothesis rule
- View the proof in PDF format
- Step through the proof in the frame:
Table of Contents