Constructive reading of classical logic
Table of Contents
Kleene 56: {(A ∨ B) ⇔ ~(~A ∧ ~B)}
A ∨ B ⇒ ¬(¬A ∧ ¬B) | by λ(f.___) |
f : A ∨ B ⊢ ¬(¬A ∧ ¬B) | by λ(g.____) |
f : A ∨ B, g: ¬A ∧ ¬B ⊢ False | by spread(g; na,nb.___) |
f : A ∨ B, na : ¬A, nb : ¬B ⊢ False | by decide(f;a. slot1 ; b. slot2 ) |
a : A B, na : ¬A, nb : ¬B ⊢ False | by ap(na.a) for slot1 |
b : B, na : ¬A, nb : ¬B ⊢ False | by ap(nb.b) for slot2 |
{¬(¬A ∧ ¬B) ⇒ (A ∨ B)}
⇐ Extract: λf.(CC;g.any(ap(f.<λa.ap(g.inl(a));λb.ap(g.inr(b))>)))
{¬(¬A ∧ ¬B) ⇒ A ∨ B} | by λ(f.___) | |
f : ¬(¬A ∧ ¬B) ⊢ {A ∨ B} | by (CC{A ∨ B};g.___) Classical contradiction | |
f : ¬(¬A ∧ ¬B), g : ¬(A ∨ B) ⊢ {A ∨ B} | by apseq(f;____;False.any(..)) | |
g : ¬(A ∨ B) ⊢ ¬A ∧ ¬B | by pair( slot1 ; slot2 ) | |
g : ¬(A ∨ B) ⊢ ¬A | by λ(a.___) for slot1 | |
g : ¬(A ∨ B), a : A ⊢ False | by ap(g.___) | |
a : A ⊢ A ∨ B | by inl(___) | |
a : A ⊢ A | by a | |
naob : ¬(A ∨ B) ⊢ ¬B | by λ(b.___) for slot2 | |
naob : ¬(A ∨ B), b : B ⊢ False | by ap(g.___) | |
b : B ⊢ A ∨ B | by inr(___) | |
b : B ⊢ B | by b |
Nuprl Proof
⊢ ∀[A,B:ℙ]. {A ∨ B ⇔ ¬(¬A ∧ ¬B)}
|
BY (D 0 THENA Auto)
|\
| 1. A: ℙ
| ⊢ ∀[B:ℙ]. {A ∨ B ⇔ ¬(¬A ∧ ¬B)}
| |
1 BY (D 0 THENA Auto)
| |\
| | 2. B: ℙ
| | ⊢ {A ∨ B ⇔ ¬((¬A) ∧ (¬B))}
| | |
1 2 BY RepeatFor 4 ((D 0 THENA Auto))
| | |\
| | | 3. A ∨ B
| | | ⊢ {¬((¬A) ∧ (¬B))}
| | | |
1 2 3 BY ElimClassical Unsquash goal
| | | |\
| | | | ⊢ ¬((¬A) ∧ (¬B))
| | | | |
1 2 3 4 BY (D 0 THENA Auto)
| | | | |
| | | | 4. (¬A) ∧ (¬B)
| | | | ⊢ False
| | | | |
1 2 3 4 BY D 4
| | | | |
| | | | 4. ¬A
| | | | 5. ¬B
| | | | ⊢ False
| | | | |
1 2 3 4 BY D 3
| | | | |\
| | | | | 3. A
| | | | | ⊢ False
| | | | | |
1 2 3 4 5 BY D 4
| | | | | |
| | | | | 4. ¬B
| | | | | ⊢ A
| | | | | |
1 2 3 4 5 BY Hypothesis
| | | | \
| | | | 3. B
| | | | ⊢ False
| | | | |
1 2 3 4 BY D 5
| | | | |
| | | | ⊢ B
| | | | |
1 2 3 4 BY Hypothesis
| | | \
| | | 4. x: Unit
| | | ⊢ (¬A) ∧ (¬B) ∈ ℙ
| | | |
1 2 3 BY Auto
| | \
| | 3. ¬((¬A) ∧ (¬B))
| | ⊢ {A ∨ B}
| | |
1 2 BY (ClassicalContradiction THENA Auto) Add contradiction of goal to hypotheses
| | |
| | 4. ¬(A ∨ B)
| | ⊢ {A ∨ B}
| | |
1 2 BY D 3
| | |
| | 3. ¬(A ∨ B)
| | ⊢ (¬A) ∧ (¬B)
| | |
1 2 BY D 0
| | |\
| | | ⊢ ¬A
| | | |
1 2 3 BY (D 0 THENA Auto)
| | | |
| | | 4. A
| | | ⊢ False
| | | |
1 2 3 BY D 3
| | | |
| | | 3. A
| | | ⊢ A ∨ B
| | | |
1 2 3 BY (OrLeft THENA Auto)
| | | |
| | | ⊢ A
| | | |
1 2 3 BY Hypothesis
| | \
| | ⊢ ¬B
| | |
1 2 BY (D 0 THENA Auto)
| | |
| | 4. B
| | ⊢ False
| | |
1 2 BY D 3
| | |
| | 3. B
| | ⊢ A ∨ B
| | |
1 2 BY (OrRight THENA Auto)
| | |
| | ⊢ B
| | |
1 2 BY Hypothesis
| \
| 2. B: ℙ
| 3. {x:Unit| A ∨ B ⇔ ¬((¬A) ∧ (¬B))}
| ⊢ Ax ∈ {x:Unit| A ∨ B ⇔ ¬((¬A) ∧ (¬B))}
| |
2
1 BY Auto
\
1. A: ℙ
2. B: ℙ
3. {x:Unit| A ∨ B ⇔ ¬((¬A) ∧ (¬B))}
⊢ Ax ∈ {x:Unit| A ∨ B ⇔ ¬((¬A) ∧ (¬B))}
|
BY Auto
PDF version of proof
Table of Contents