Constructive reading of classical logic
Table of Contents
Kleene 62: {~(A ∧ B) ⇔ (~A ∨ ~B)}
¬A ∨ ¬B ⇒ ¬(A ∧ B) | by λ(f.___) |
f: ¬A ∨ ¬B ⊢ ¬(A ∧ B) | by λ(g.___) |
f: ¬A ∨ ¬B, g : A ∧ B ⊢ False | by spread(g; a,b.___) |
f: ¬A ∨ ¬B, a : A, b : B ⊢ False | by decide(f;na. slot1 ;nb. slot2 ) |
na : ¬A, a : A, b : B ⊢ False | by ap(na.a) for slot1 |
nb : ¬B, a : A, b : B ⊢ False | by ap(nb.b) for slot2 |
{¬(A ∧ B) ⇒ (¬A ∨ ¬B)}
⇒ Extract: λf.(CC;g.inl(λa.ap(g.inr(λb.ap(f.<a;b>)))))
{¬(A ∧ B) ⇔ (¬A ∨ ¬B)} | by λ(f.___) |
f : ¬(A ∧ B) ⊢ {¬A ∨ ¬B} | by (CC{¬A ∨ ¬B};g.___) Classical contradiction |
f : ¬(A ∧ B), g : ¬(¬A ∨ ¬B) ⊢ {¬A ∨ ¬B} | by inl(___) will also work for inr |
f : ¬(A ∧ B), g : ¬(¬A ∨ ¬B) ⊢ {¬A} | by λ(a.____) |
f : ¬(A ∧ B), g : ¬(¬A ∨ ¬B), a : A ⊢ False | by ap(g.___) |
f : ¬(A ∧ B), a : A ⊢ ¬A ∨ ¬B | by inr(___) choose inl if chose inr before |
f : ¬(A ∧ B), a : A ⊢ ¬B | by λ(b.___) |
f : ¬(A ∧ B), a : A, b : B ⊢ False | by ap(f.___) |
a : A, b : B ⊢ A ∧ B | by pair(a;b) |
Nuprl Proof
⊢ ∀[A,B:ℙ]. {¬(A ∧ B) ⇔ (¬A ∨ ¬B)}
|
BY (D 0 THENA Auto)
|\
| 1. A: ℙ
| ⊢ ∀[B:ℙ]. {¬(A ∧ B) ⇔ (¬A ∨ ¬B)}
| |
1 BY (D 0 THENA Auto)
| |\
| | 2. B: ℙ
| | ⊢ {¬(A ∧ B) ⇔ (¬A ∨ ¬B)}
| | |
1 2 BY RepeatFor 4 ((D 0 THENA Auto))
| | |\
| | | 3. ¬(A ∧ B)
| | | ⊢ {(¬A) ∨ (¬B)}
| | | |
1 2 3 BY (ClassicalContradiction THENA Auto) Add contradiction of goal to hypotheses
| | | |
| | | 4. ¬((¬A) ∨ (¬B))
| | | ⊢ {(¬A) ∨ (¬B)}
| | | |
1 2 3 BY (ElimClassical· THENA Auto) Unsquash goal
| | | |
| | | ⊢ (¬A) ∨ (¬B)
| | | |
1 2 3 BY (OrLeft THENA Auto)
| | | |
| | | ⊢ ¬A
| | | |
1 2 3 BY (D 0 THENA Auto)
| | | |
| | | 5. A
| | | ⊢ False
| | | |
1 2 3 BY D 4
| | | |
| | | 4. A
| | | ⊢ (¬A) ∨ (¬B)
| | | |
1 2 3 BY (OrRight THENA Auto)
| | | |
| | | ⊢ ¬B
| | | |
1 2 3 BY (D 0 THENA Auto)
| | | |
| | | 5. B
| | | ⊢ False
| | | |
1 2 3 BY D 3
| | | |
| | | 3. A
| | | 4. B
| | | ⊢ A ∧ B
| | | |
1 2 3 BY D 0
| | | |\
| | | | ⊢ A
| | | | |
1 2 3 4 BY Hypothesis
| | | \
| | | ⊢ B
| | | |
1 2 3 BY Hypothesis
| | \
| | 3. (¬A) ∨ (¬B)
| | ⊢ {¬(A ∧ B)}
| | |
1 2 BY (ElimClassical THENA Auto) Unsquash goal
| | |
| | ⊢ ¬(A ∧ B)
| | |
1 2 BY (D 0 THENA Auto)
| | |
| | 4. A ∧ B
| | ⊢ False
| | |
1 2 BY D 4
| | |
| | 4. A
| | 5. B
| | ⊢ False
| | |
1 2 BY D 3
| | |\
| | | 3. ¬A
| | | ⊢ False
| | | |
1 2 3 BY D 3
| | | |
| | | 3. A
| | | 4. B
| | | ⊢ A
| | | |
1 2 3 BY Hypothesis
| | \
| | 3. ¬B
| | ⊢ False
| | |
1 2 BY D 3
| | |
| | 3. A
| | 4. B
| | ⊢ B
| | |
1 2 BY Hypothesis
| \
| 2. B: ℙ
| 3. {x:Unit| ¬(A ∧ B) ⇔ (¬A ∨ ¬B)}
| ⊢ Ax ∈ {x:Unit| ¬(A ∧ B) ⇔ (¬A ∨ ¬B)}
| |
1 BY Auto
\
2
1. A: ℙ
2. B: ℙ
3. {x:Unit| ¬(A ∧ B) ⇔ (¬A ∨ ¬B)}
⊢ Ax ∈ {x:Unit| ¬(A ∧ B) ⇔ (¬A ∨ ¬B)}
|
BY Auto
PDF version of proof
Table of Contents