A Natural Deduction Approac

editors when e ciency can be increased by

in line

X; Te; B; C;	P:Set	isld : X ! Te	[] :C! P! P
÷ь	:B ! B	0 ; 1 : Te	:C ! C
ь; ^ь	:B ! B ! B	+; : Te ! Te ! Te	? :B! C
:	:P ! P	= _b ; < _b : Te ! Te ! B	;;+:C ! C ! C
; ^	:P ! P ! P	=; < : Te ! Te ! P	:= :X! Te! C

Fig. 2. RepresenNa)t0717b7316624d1.(024)81(j);55bjm/1R12172899666j388756cb7vs1887uc0toTs3ds€n)Tj7 8.5s9.R117 8.96638 Tf11.717

A Syn

B Consequence Relations

De nition 7 CR. A (single-conclusioned) Consequence Relation on a set F of formul is a binary relation j=P(F) F which satis es the following properties: Re exivity: $p \neq p$ for ev 7. D. Harel. First-Order Dynamic Logic. No.68 in LNCS. Springer-Verlag, 1979.