
Formalizing the Theory Concept in Nuprl

Jason Hickey
March 15, 1994

2

Outline

3

Goals of formalization

4

Goal generƒization

Operate within a context of Theorems, Axioms, Definitions·
Primary goal is to extend the context·
Problems·

flat name space·
unrestricted access·
generƒl form of inheritance·

5

Flat name space

Flat namespace

tty nethack.c

a.out nuprl.c

root jyh jyh rc

tty a.out nuprl.c core

dev /usr/u

jyh
rc

nethack.c

Hierarchy

6

Unrestricted Access

7

Inheritance
Running example

monoid

abelian decidable

8

Reflection

Want to reason about·
proofs·
theories·
tactics·

9

Object Orientation

Abstract Data Typing·
Inheritance·

10Dependent Product

* ABSmonoid

Monoidfig == car:Ufig
unit:car

£
 op:(car ! car ! car)

£
 eq:(car ! car ! Pfig)
£
 eq-ref:(8a:car. a eq a)

£
 eq-sym:(

11

Generalize the dependent product

Number of elements is arbitrary·

12

Least constraining ordering

car: Ui

op: car Æ car Æ car unit: car eq: car Æ car Æ Pi

eq-ref

eq-sym

eq-trans

op-assoc

unit-axiom

13

TheoryItem

Reference this axiom by name·

14

Axiom type

Define lookup function·
Ld0up(Type) name in preds·
Axiom: (name: ID → L d 0 6 q u p (T y p e) n a m e i n p r e d s)

 → Ui

15

Example

MonoidCar: <"car", [], lparents, lookup. Ui>·
MonoidUnit:
 <"unit",
 [MonoidCar],
 λparents, lookup.
 Lookup "car" in parents using MonoidCar>

16

Real Example

* ABS monoid car

MonoidCarfig== fcarg(Ufig)

* ABS monoid car thy

Name = car/ � ,
Flags = CNil,

Lib = CNil,

Preds = CNil,

Axiom(par, pre) = MonoidCar

17

MonoidUnit

* ABS monoid unit preds

MonoidUnitPredsfig == MonoidCarThyfig::CNil

* ABS monoid unit

MonoidUnit(parents, preds) == TheoryEnv[parents, preds]

car = car

infunitg
car

* ABS monoid unit thy

MonoidUnitThyfig == Axiom:

Name = unit/ � ,
Flags = CNil,

18

MonoidOpAssoc

* ABS monoid unit preds

19

Theorems

Axiom: "every monoid has an
order"

·

Theorem extract: function that
computes the order

·

May want several proofs of the
theorem depending on the
particular monoid

·

20

Why do we want Theorems?

To show something is true·
"Every monoid of prime order is cyclic"·

To compute·
"Every monoid has an order"·

Don't handle extracts!·
A Theorem is just a link from an axiom to an object in the

Naming considerations

Can pull in any theory-
Must inherit all axioms as well-

21

Monoid

Group
inverse:

•••

•••

inverse:

¬inverse

a b

22

Problems

rec(Theory. •••) does not work!·
Typing rule is too simple.·

Build type on top of Y-combinator·

23

Y-combinator

Can hide all instances of bounds by using derived rules·
All proofs are by (normal) induction·
No fixed-pdbnt semantics·

24

Data structure

In a functional language where equality is undecidable, how
can we represent a DAG? (Would like an equality over
strings)

·

My solution·
need an arbitrary total order.·

25

Results

Can reasd•about theories
A theory is a normal object, reasd•ing is typically by inductid•

·

Examples·
Kndwledge mdndtd•icaly increases·
Equivalence of theories·
"Lifting" of theorems: any theorem can be lifted to be beneath its
immediate predecessors

·

26

Results II

Naming is better·

27

Problems

28

Future work

Package theories in a hierarchy·
Conceptual blocks·
Assist in naming

29

TheoryType
* ML theory type switch ml

% Givena �TheoryItemType fig(n)�, construct a product of all the axioms

30

TheoryLookup
* ML theory lookup switch ml

% Given a �TheoryItemTypefig(n)�, and a term of �TheoryType(item)�,

and a name of type �ID�, return the term inhabinting the axiom by that name.

%

add rec def �Lookup[switch] name in term using item�

�case switch

of inl() =>

if name 2 item.name

then inr term.2

elsewiLookup[inr�] name in term.1 using item.preds

fi

 inr() =>

Case item of

CNil => inl �
hd::tl => casewiLookup[inl�] name in term.1 using hd.theory

of inl() =>

Lookup[inr

 inr(x) =>
inr x�;;

31

TheoryLookupType
* ML theory lookup type switch ml

% Give a �TheoryItemTypefig(n)�
, and a term of �TheoryType(item)�
,

and a name �ID�, return the axiom of that name.

%

add rec def �Lookup(type)[switch] name in term using item�

�case switchof inl() =>

if name 2 item.name

then inr Switch x = item.term ofAxiom! x (term.1) (� name.Lookup(preds,fail) name in term.1 using item.preds)Theorem! Unit

Else ! Unitelse Lookup(type)[inr�] name in term.1 using item.preds

fi

| inr() =>

Case item of

CNil => inl Unit

hd::tl => case Lookup(type)[inl �] name in term.1 using hd.theory

of inl() =>

Lookup(type)[inr �] name in term.2 using tl| inr(x) =>inr x�;;

