
Formal Modules (Abstract Data Types)

and object oriented programming

Jason J. Hickey·
Cornell University·

Outline

Programming motivation·
Modularity·
Very-dependent types·
Related work·
Grand Unified Type Theory (GUTT)·

Scalable programming

Large sd•ftware systems·

Formal programming

Logical specifications·
Functional programming·
Automatic program extraction

Unified framework
Lack of modularity·
versus:Q7

Fault toleranceQ67

Guidelines for formal software design
Compromise

Require more explicit specifications·
Use constructivism constructively·
Higher level types (specification for free)·
Higher level assertions·
Static (as well as runtime) verification·

Provide tools for modularity·
Abstraction of object properties·
Abstraction barriers to isolate implementations·

Definitions

Abstract Data Type = Module specification = Class·
Module implementation = Object·
Object ∈

7

Modularity
(A real-life example)

type Torso =
 { s:Spine, r:Rib list,

Modularity
(A mathematical example)

£ ! !
£ 8x: :x x
£ 8x; y: :x y y x
£ 8x; y; z: :x y) y z) x z
£ : ! !
£ 8x; y; z: :(x y) z x (y z)
£
£ 8x: :x x

is

is

£ 8x: :9y: :x y

=:
=

=) =
= = =

'
' ' = ' '

1:
' 1 =

' = 1

carSemi-group :Type
car car Prop

car
car

car

Modularity
A logic(al) example

How are these concepts related?

Proposal: they are all identical·
They can be implemented the same way·
They have similar, if not exactly the same, informal semantics·
Each is an instance of a qualified assertion·
Great observation—what does it buy us?·

A formal concept of an “object”·
A formal relation between the logic and the object specification·
A reflection of modularity onto the semantics·
Representation coercions are the identity·

How can we extend the formalism?

Implement a class as an extensible, dependent recdXrd type·

Primitive object
A collection of “parent” specif-2•cations·

Very dependent types
Dependent type x:D Æ R(x)

Range specification depends on argument·
D is a type, and for any x ∈ D, R(x) is a type·
f ∈ x:D → R if f is a function, and for x ∈ D, f(x) ∈ R(x)·

Month functions: m:{1.gı12} → {1...DaysPerMonth(m)}·

l: l
)
)
)
)name
age
emplo
salary

name
age
employer
salary

yer

String
N
Company
Z

String
N
Company
Z

LabelPerson: Field Type

! case of

Very dependent types
Very dependent function type {f | x:D → R(x, f) }

8x; y; z:8>>>><>>>>:fflflflflflflflflflfll: !8>>>><>>>>:
)
) ! !
) ! !
) 8x; y; z: :(x y) z

:(x y) z x (y z

l

! !
! ! 9>>>>=>>>>;

car'
=
op{assoc

car
'
=
op{assoc f(') ('

f(=)

' ' = ' 'T
car car car
car car Prop

car

Label
Typ
f(car

fcar

) f(car
f(car

) f

(car
f

(car)

Do we need a formal definition?

Alternative semantics

Other very dependent types
Very dependent W-types

Other very dependent types
Very dependent recursive types

·

May have no fixed point·
The meaning is clear:·

The type is its • unrolling·
Union of all unrollings·

We don't need an extension to the type theory—just one
ordinal

·

Or an indexed union·

List of
Dependent list of

: „()
: „(x:

: +
: +

T X Unit X £ T
T X Unit X £ T x())

i: £ i! T [
i2

iT

Class definitions

A class is a theory·

*C multisetHbegin
*A T: Ui
*A car: Ui
*A inject: T ∅ car
*A ≈: car ∅ car ∅ car
*A ∀a, b: car. a ≈ b = b ≈ a � car
• • •
*C multiset_end

*C intHmultisetHbegin
*T T (Z)
*T car (T ∅ B)

• • •
*C intHmultiset_end

*C dec_multisetHbegin
*A ∀a, b: car. a = b car + a ≠ b car

• • •
*C dec_multiset_end

*C intHdec_multiset_begin
*T ∀a, b: car. a = b � car + a ≠ b

� car
• • •

*C int_dec_multisetHend

Construction by formation

A class can be defined as a theory·
Axioms are method specifications·
Theorems are method implementations·
Other objects (definitions, etc) behave the same·
Inheritance is implicit·

Each class has a type·
Methods are projections·
IsA hierarchy is explicit, or maintained as theory dependencies·

Still support explicit methods·
Coercions can be provided (explicitely, or as a theory)·

Points to consider

Recursive classes·

Grand Unified Theory

What is a rule?

H:Sequent* × C:Sequent·

What is a theory?

H:Type* × T:ype*

Unify rules and theorh˝6 by removing
well-formedness constraints

Incorporate hierarchical nature·
Generalize sequents by making them recursive:·

H:(Sequent + Type) × C:(Sequent + Type)·
If H are true, well-formed, and functional, then is true·

The unification point:

We can automatically convert between:·
Sequents·

