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Formal programming
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Guidelines for formal software design
Compromise

Require more explicit specifications·
Use constructivism constructively·
Higher level types (specification for free)·
Higher level assertions·
Static (as well as runtime) verification·

Provide tools for modularity·
Abstraction of object properties·
Abstraction barriers to isolate implementations·



Definitions

Abstract Data Type = Module specification = Class·
Module implementation = Object·
Object ∈
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Modularity
(A real-life example)

type Torso =
 { s:Spine, r:Rib list,



Modularity
(A mathematical example)
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Modularity
A logic(al) example



How are these concepts related?

Proposal: they are all identical·
They can be implemented the same way·
They have similar, if not exactly the same, informal semantics·
Each is an instance of a qualified assertion·
Great observation—what does it buy us?·

A formal concept of an “object”·
A formal relation between the logic and the object specification·
A reflection of modularity onto the semantics·
Representation coercions are the identity·



How can we extend the formalism?

Implement a class as an extensible, dependent recdXrd type·



Primitive object
A collection of “parent” specif-2•cations·



Very dependent types
Dependent type x:D Æ R(x)

Range specification depends on argument·
D is a type, and for any x ∈ D, R(x) is a type·
f ∈ x:D →  R if f is a function, and for x ∈ D, f(x) ∈ R(x)·

Month functions: m:{1.gı12} →  {1...DaysPerMonth(m)}·
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Very dependent types
Very dependent function type {f | x:D →  R(x, f) }
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Do we need a formal definition?



Alternative semantics



Other very dependent types
Very dependent W-types



Other very dependent types
Very dependent recursive types

·

May have no fixed point·
The meaning is clear:·

The type is its • unrolling·
Union of all unrollings·

We don't need an extension to the type theory—just one 
ordinal

·

Or an indexed union·
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Class definitions

A class is a theory·

*C multisetHbegin
*A T: Ui
*A car: Ui
*A inject: T ∅ car
*A ≈: car ∅ car ∅ car
*A ∀a, b: car. a ≈ b = b ≈ a � car
• • •
*C multiset_end



*C intHmultisetHbegin
*T  T (Z)
*T  car (T ∅ B)

• • •
*C intHmultiset_end

*C dec_multisetHbegin
*A  ∀a, b: car. a = b  car + a ≠ b  car

• • •
*C dec_multiset_end

*C intHdec_multiset_begin
*T ∀a, b: car. a = b � car + a ≠ b 

� car
• • •

*C int_dec_multisetHend



Construction by formation

A class can be defined as a theory·
Axioms are method specifications·
Theorems are method implementations·
Other objects (definitions, etc) behave the same·
Inheritance is implicit·

Each class has a type·
Methods are projections·
IsA hierarchy is explicit, or maintained as theory dependencies·

Still support explicit methods·
Coercions can be provided (explicitely, or as a theory)·



Points to consider

Recursive classes·



Grand Unified Theory



What is a rule?

H:Sequent* × C:Sequent·



What is a theory?

H:Type* × T:ype*



Unify rules and theorh˝6 by removing 
well-formedness constraints

Incorporate hierarchical nature·
Generalize sequents by making them recursive:·

H:(Sequent + Type) × C:(Sequent + Type)·
If H are true, well-formed, and functional, then is true·



The unification point:

We can automatically convert between:·
Sequents·


