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Outline

 What are:
—the goals

—the philosophy

—the domain

—of NuPRL
 Interactive Theorem Proving
e System

— Architecture
—Logic “engine”
— User interface
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Philosophy

Formalize & implemeninathematicandcomputation
Assistthe implementor
Logic/type theory is the formal language of choice
—Possible to derive algorithms without ever writing a program
— Programming comes as a by-product
Truth of statements is undecidable
— Proofs are by interaction
— A great deal ofssistances available (checking, prompting, documenting)
— Someautomationavailable

— System goals:
¢ develop automation as well as math domains
¢ make the user interface comfortable
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Logic & Type Theory

How can mathematics be formalized?
Use a logic with statements, assertions, and inference rules
Constructive type theory: higher order logic + computation
— Types provide specifications for programs
—Types are assertions
— Programs can be derived from proofs, or can be shown to inhabit types
Types (specifications/assertions/propositions):
—\oid, Int, * list
— Equality
— Functions (x:A- B), Products (x:Ax B), Disjoint Unions (A + B)
—Type universes (Ui is all types at level i, DiU{i + 1})
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Types |

» Function space
—[Oi:N.i1=0
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Types Il

» Type universes
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Seguents

Sequent: aH;, &:H,, ..., 8;H,|— G
—H, is a type
—for any g [ Hq, Hyla4] is a type
—forany g O Hq, ..., 8.1 0 Hyqlag, -, &0, Hi[8q,-.-,84.1] IS & type
—forana,OHq, ..., a0H &y, ..., 81, Gl&y, ..., &] is atype, and it is true
Functionality
—for any g, b; U Hq, Hy[a4] and Hy[b4] are equal types
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Argume
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2Nts

Rules

« Arule is an implication on sequents:
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Syntax Examples

Number:1 = natural_number{1:n}

Variable:x = variable{x:v}

Summationi +j  =add{}(.variable{i:v}; .variable{j:v})
Abstractionax.x + 1=lambda{}(x.x + 1)
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User Model

* The user builds domains by:
— creating definitions of:
¢ TYTEC
¢ UETNO0OC
¢ TIPOTEPTIED
[l wepi@Pivy poTepTIEthBorems
* The interface is interactive
— As opposed to batch Al first order theorem provers
— Premises are complex
— Backward chaining (goal oriented)
¢ 2UTOAY TNE YOOA 0@ O TNEOPEU
¢ Pell vat with a rule or a tactic to generate subgoals
Prove the subgoals
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Example Proof Step
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System Architecture

* Refiner enforces the logic
» Library mantains database of definitions and inference steps
« Editor provides a user interface
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Refiner
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Tactics

» Refiner may also providetactic language
* In NuPRL, the language is ML
« Tactics can be programmed to analyze goals, and perform more intelligen'f;; -
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Styles of reasoning in NUPRL

* Proofs are interactive, and refined

 Prove ,ggm,%t@i&g—,&ﬁw& LDaRYSHRGTRNE PI8Y EMMsible assertion)

Well-formedness is a major component of proving
— The well-formedness a cking is delayed
— A theorem must be verified to be well-formed as it is proved
— Example:to prove ALl B, prove A is a proposition, then assume A and prove B
— This style differs from other major type theories
— Well-formedness is undecidable, but the type system is quite expressive

—Not true that if a term is well-formed, then so is every subterm
¢ Void - (1 + 2)
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Provided Tactics

Auto : tactic

— Performs default well-formedness reasoning (gets most cases)

— Performs simple logical reasoning

— TriBs:timlimit search so that every step gets closer to a proof

- tactic

—“Decompose” a clause

—on 0, performs amtroduction

—on a hyp, performs aglimination case anlysis or induction
Natind : int tactic

— betieittiartaaticeliminatiandSupattirabhotiecnbers

Perform reasoning about arithmetic
— LinR" systens of equations
~int - tactic

Jason Hickey
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Provided Tacticals

A tactical is a function taking a tactic as an argument
Tacl THENTac?2
—Run Tacl on goal, then run Tac2 on all subgoals
Tacl THENWac2
—Run Tacl on goal, then run Tac2 on all well-formedness subgoals
Tacl ORELSETac?2
—Run Tacl on goal. If it fails, run Tac2
Also have:

—functions to examine terms

Jason Hickey
November 2, 1995
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Editor

What are the objects of the system?
— Definitions
—Rules—
Theorems

— Comments—
Coflkof them contain terms
» Structured editing of terms
» Each term may havedsplay form
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Library

» Library window displays loaded objects

Organized intdheories
—Linear list of items

Begins with comment object

calleame_begin

— Ends with comment object cal.6ade end

One liner for each item

— Status*: correct and complete, #: partial, -: inco Oect—

Type

¢ C:comment, D: display form, T: theorem, A: abstraction, R: rule, M: ML code
¢ lower case if object has not been checked

— Synopsisfirst line of contents

Jason Hickey
November 2, 1995
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Library Window
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Display Forms

 Terms may be:
— primitive, like Av.b (lambda{}(v.b) ), orZ(int}() )

—defined likeletv=einb
let{}(.e; v.b) - ( Av.b)(e)

» A display form may be defined for any term
» Specifies how the term should be printed

L HS contains printing directives

Slots describe areas for terms

When the term is constructed, the user is prompted for input in the slots
Special instructions for line breaking, parenthesizathe sn, etc.
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Abstractions

» Definitions are made throug24 Qactions

the defined/definition; the redex/contractum

ABS zlet Ewrigel.cs.comell.edu

« Often used to define more complex types:

wlsddaps Euul_@ﬁuel.g‘_ﬁ.:nmmumlhgjﬁi :

r

il
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Abstraction Well-formedness

» Abstractions usually have a well-formedness theorem
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Larger Example
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Large Well-formedness

» Well-formedness is quantified by types of arguments

by
l
%.
)
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Term Editor Commands

» Large assortment of commands for editing terms
» Use either keyboard or mouse

* To get a new term, type the name of its display form (usually the operator name)

—F movedorward, *"B moveshack
— /P movesaup the term tree

—"O opens

Jason Hickey
November 2, 1995
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Refinement (Prd ) Editor

N —

e A window into a prd f of a theorewq hasfQur parts:
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Refinement

O opens goal or subgoal term or rule box
O edits the main goal of a theorem

Type tactic into rule box

~Z closes an@hecksa term or rule box

— Set the goal
— Runs the tactic to produce subgoals
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Summary

Nuprl is a system for developing formal mathematics
Formalism is based dgipe theorylogic + computation)
System is designed to assist and automate the formalization

Three parts:
— Refiner (for checking and inferring proofs)
—Library (for storing rules, definitions, and proofs)
— Editor (human interface for editing object in the library)
Refiner uses ML astactic language
Editor works directrly on the term tree
—Structured editing
Display forms for terms —
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Where to go from here

* Documentation
— Nuprl book
—Web site (http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html)
¢ Nuprl book
¢ Nuprl 4.2 reference manual
¢ Nupme 4.2 tutorial
¢ Library browser
 To use Nupml
— ExNo eeutaprl/bin/run-nuprl

—Use large SunOS machine, ligemini or virgo
—xhost the machine you are running from
— It does run on Solaris, just not officially supported

31 0f 31

Jason Hickey
November 2, 1995




	Nuprl Tutorial
	Jason Hickey
	Cornell University
	February 2, 1997

	Outline
	• What are:
	— the goals
	— the philosophy
	— the domain
	— of NuPRL

	• Interactive Theorem Proving
	• System
	— Architecture
	— Logic “engine”
	— User interface


	Philosophy
	• Formalize & implement mathematics and computatio...
	• Assist the implementor
	• Logic/type theory is the formal language of choi...
	— Possible to derive algorithms without ever writi...
	— Programming comes as a by-product

	• Truth of statements is undecidable
	— Proofs are by interaction
	— A great deal of assistance is available (checkin...
	— Some automation available
	— System goals:
	develop automation as well as math domains
	make the user interface comfortable



	Logic & Type Theory
	• How can mathematics be formalized?
	• Use a logic with statements, assertions, and inf...
	• Constructive type theory: higher order logic + c...
	— Types provide specifications for programs
	— Types are assertions
	— Programs can be derived from proofs, or can be s...

	• Types (specifications/assertions/propositions):
	— Void, Int, * list
	— Equality
	— Functions (x:A Æ B), Products (x:A ¥ B), Disjoin...
	— Type universes (Ui is all types at level i, Ui Œ...


	Types I
	• Function space
	— "i:N. i ³ 0
	— i:N Æ i ³ 0
	— i:N Æ {iº}

	• Product space
	— $i:N. TM(i) halts
	— "i:N. $j:N. j * j £ i Ÿ (j + 1) * (j + 1) > i
	— i:N Æ j:N ¥ (j * j £ i) ¥ ((j + 1) * (j + 1) > i...

	• Disjoint union
	— A + B
	— "i:N. TM(i) halts ⁄ ØTM(i) halts


	Types II
	• Type universes
	— Ui is all types/propositions to level i
	— Z, Void Œ U1
	— A, B Œ Ui ﬁ x:A Æ B Œ Ui, etc
	— "P:N Æ Ui. P(0) ﬁ ("i:N.P(i) ﬁ P(i + 1)) ﬁ ("i:N...
	— Ui Œ U{i + 1}

	• Set
	— car:Ui ¥ insert:Z Æ car ¥ member: Z Æ car Æ Ui ¥...

	• Equality types
	— a = b Œ T
	— T is a well-formed type
	— a and b are well-formed elements of T
	— a and b are equal elements in T
	— membership: a = a Œ T means a Œ T


	Sequents
	• Sequent: a1:H1, a2:H2, º, an:Hn  — G
	— H1 is a type
	— for any a1 Œ H1, H2[a1] is a type
	— ···
	— for any a1 Œ H1, º, an-1 Œ Hn-1[a1, º, an-2], Hn...
	— for any a1 Œ H1, º, an Œ Hn[a1, º, an-1], G[a1, ...

	• Functionality
	— for any a1, b1 Œ H1, H2[a1] and H2[b1] are equal...
	— ···


	Rules
	• A rule is an implication on sequents:

	Syntax
	• Everything is a term:
	— term ::= opname{params}(bterms)
	— opname ::= <string>
	— params ::= e   paramlist
	— paramlist ::= param   paramlist , param
	— param ::= <number> : n   <string> : s   level-ex...
	— bterms ::= e   btermlist
	— btermlist ::= bterm   btermlist ; bterm
	— bterm ::= vars . term
	— vars ::= e   varlist
	— varlist ::= var   varlist , var
	— var ::= <string>


	Syntax Examples
	• Number: 1 º natural_number{1:n}
	• Variable: x º variable{x:v}
	• Summation: i + j º add{}(.variable{i:v}; .variab...
	• Abstraction: lx.x + 1 º lambda{}(x.x + 1)

	User Model
	• The user builds domains by:
	— creating definitions of:
	types
	methods
	properties

	— verifying properties in theorems

	• The interface is interactive
	— As opposed to batch AI first order theorem prove...
	— Premises are complex
	— Backward chaining (goal oriented)
	Supply the goal of a theorem
	Refine it with a rule or a tactic to generate subg...
	Prove the subgoals



	Example Proof Step
	System Architecture
	• Refiner enforces the logic
	• Library mantains database of definitions and inf...
	• Editor provides a user interface

	Refiner
	• Performs refinement according to rule collection...

	Tactics
	• Refiner may also provide a tactic language
	• In NuPRL, the language is ML
	• Tactics can be programmed to analyze goals, and ...

	Styles of reasoning in NuPRL
	• Proofs are interactive, and refined
	• Prove something is true (inhabited by some progr...
	• Prove something is well-formed (that it is a sen...
	— Well-formedness is a major component of proving
	— The well-formedness checking is delayed
	— A theorem must be verified to be well-formed as ...
	— Example: to prove A ﬁ B, prove A is a propositio...
	— This style differs from other major type theorie...
	— Well-formedness is undecidable, but the type sys...
	— Not true that if a term is well-formed, then so ...
	Void Æ (1 + Z)



	Provided Tactics
	• Auto : tactic
	— Performs default well-formedness reasoning (gets...
	— Performs simple logical reasoning
	— Tries to limit search so that every step gets cl...

	• D : int Æ tactic
	— “Decompose” a clause
	— on 0, performs an introduction
	— on a hyp, performs an elimination, case anlysis ...

	• NatInd : int Æ tactic
	— better form of elimination on natural numbers

	• Arith : tactic and SupInf : tactic
	— Perform reasoning about arithmetic
	— Linear systems of equations

	• RW : conv Æ int Æ tactic
	— Rewrites using equivalences or implications


	Provided Tacticals
	• A tactical is a function taking a tactic as an a...
	• Tac1 THEN Tac2
	— Run Tac1 on goal, then run Tac2 on all subgoals

	• Tac1 THENW Tac2
	— Run Tac1 on goal, then run Tac2 on all well-form...

	• Tac1 ORELSE Tac2
	— Run Tac1 on goal. If it fails, run Tac2

	• Also have:
	— functions to examine terms
	— functions to build terms
	— all standard functions in ML

	• Tactics are secure because there is no way to co...

	Editor
	• What are the objects of the system?
	— Definitions
	— Rules
	— Theorems
	— Comments
	— Code

	• All of them contain terms
	• Structured editing of terms
	• Each term may have a display form

	Library
	• Library window displays loaded objects
	• Organized into theories
	— Linear list of items
	— Begins with comment object called name_begin
	— Ends with comment object called name_end

	• One liner for each item
	— Status *: correct and complete, #: partial, -: i...
	— Type
	C: comment, D: display form, T: theorem, A: abstra...
	lower case if object has not been checked

	— Synopsis first line of contents


	Library Window
	Display Forms
	• Terms may be:
	— primitive, like lv.b (lambda{}(v.b)), or Z (int{...
	— defined, like let v = e in b let{}(.e; v.b) Æ (l...

	• A display form may be defined for any term
	• Specifies how the term should be printed
	• LHS contains printing directives
	• Slots describe areas for terms
	• When the term is constructed, the user is prompt...
	• Special instructions for line breaking, parenthe...

	Abstractions
	• Definitions are made through abstractions
	• An abstraction defines a pair of terms that are:...
	— the defined/definition; the redex/contractum

	• Often used to define more complex types:

	Abstraction Well-formedness
	• Abstractions usually have a well-formedness theo...

	Larger Example
	Large Well-formedness
	• Well-formedness is quantified by types of argume...

	Term Editor Commands
	• Large assortment of commands for editing terms
	• Use either keyboard or mouse
	• To get a new term, type the name of its display ...
	— ^F moves forward, ^B moves back
	— ^P moves up the term tree
	— ^O opens a term slot
	in the middle to text (like tactic text)
	in the middle of a term (to add a subterm)

	— ^Xex explodes a term (displays it in canonical f...
	— ^Xim implodes it
	— ^K kills a term, ^Y yanks it back from the kill ...


	Refinement (Proof) Editor
	• A window into a proof of a theorem has four part...

	Refinement
	• ^O opens goal or subgoal term or rule box
	• ^O edits the main goal of a theorem
	• Type tactic into rule box
	• ^Z closes and checks a term or rule box
	— Set the goal
	— Runs the tactic to produce subgoals


	Summary
	• Nuprl is a system for developing formal mathemat...
	• Formalism is based on type theory (logic + compu...
	• System is designed to assist and automate the fo...
	• Three parts:
	— Refiner (for checking and inferring proofs)
	— Library (for storing rules, definitions, and pro...
	— Editor (human interface for editing object in th...

	• Refiner uses ML as a tactic language
	• Editor works directrly on the term tree
	— Structured editing
	— Display forms for terms


	Where to go from here
	• Documentation
	— Nuprl book
	— Web site (http://www.cs.cornell.edu/Info/Project...
	Nuprl book
	Nuprl 4.2 reference manual
	Nuprl 4.2 tutorial
	Library browser


	• To use Nuprl
	— Execute ~nuprl/bin/run-nuprl
	— Use large SunOS machine, like gemini or virgo
	— xhost the machine you are running from
	— It does run on Solaris, just not officially supp...



