

Outline

- What are:
 - the goals
 - the philosophy
 - the domain
 - of NuPRL
- Interactive Theorem Proving
- System
 - Architecture
 - Logic "engine"
 - User interface

Philosophy

- Formalize & implement *mathematics* and *computation*
- *Assist* the implementor
- Logic/type theory is the formal language of choice
 - Possible to derive algorithms without ever writing a program
 - Programming comes as a by-product
- Truth of statements is undecidable
 - Proofs are by interaction
 - A great deal of *assistance* is available (checking, prompting, documenting)
 - Some *automation* available
 - System goals:
 - develop automation as well as math domains
 - make the user interface comfortable

Logic & Type Theory

- How can mathematics be formalized?
- Use a logic with statements, assertions, and inference rules
- Constructive type theory: higher order logic + computation
 - Types provide specifications for programs
 - Types are assertions
 - Programs can be derived from proofs, or can be shown to inhabit types
- Types (specifications/assertions/propositions):
 - Void, Int, * list
 - Equality
 - Functions (x:A \rightarrow B), Products (x:A \times B), Disjoint Unions (A + B)
 - Type universes (Ui is all types at level i, $Ui \in U\{i + 1\}$)

Types I

- Function space
 - $\forall i: N. i \ge 0$
 - $i:N \rightarrow i \ge 0$
 - —

Types II

- Type universes
 - Ui is all types/propositions to level i
 - Z, Void U1
 - $\quad \in \text{Ui} \quad x: A \to B \in$
 - **1** $P:N \rightarrow Ui. P(0) \forall i) P(i+1) \Rightarrow (\forall$
 - ∈
 - **1**car:Ui × $\chi \alpha \Theta$ 0.549 0 TΔ 6-μαμίβερ: Z Y{1+1}
- Equality types

a = b

- T is a well-formed type

2aLand b are well-formed elements of T

membership: a = a

Sequents

- Sequent: $a_1:H_1$, $a_2:H_2$, ..., $a_n:H_n \models G$
 - H_1 is a type
 - for any $a_1 \in H_1$, $H_2[a_1]$ is a type
 - •••
 - for any $a_1 \in H_1, ..., a_{n-1} \in H_{n-1}[a_1, ..., a_{n-2}], H_n[a_1, ..., a_{n-1}]$ is a type
 - for an $a_1 \in H_1, ..., a_n \in H_n[a_1, ..., a_{n-1}], G[a_1, ..., a_n]$ is a type, and it is true
- Functionality
 - for any $a_1, b_1 \in H_1, H_2[a_1]$ and $H_2[b_1]$ are equal types

- •••

Syntax Examples

- Number: 1 = natural_number{1:n}
- Variable: x = variable{x:v}
- Summation: i + j = add{}(.variable{i:v}; .variable{j:v})
- Abstraction: $\lambda x.x + 1 \equiv \text{lambda}\{\}(x.x + 1)$

User Model

- The user builds domains by:
 - creating definitions of:
 - •
 - properties

 \tilde{N} verifying properties in heorems

- The interface is interactive
 - —
 - _
 - —
- Supply the goal of a theorem
- " ReÞneit with a rule or a tactic to generate subgoals
- " Prove the subgoals

	······································	
		•
;		,

System Architecture

- Refiner enforces the logic
- Library mantains database of definitions and inference steps
- Editor provides a user interface

13 of 31

Jason Hickey November 2, 1995

Tactics

- Refiner may also provide a *tactic* language
- In NuPRL, the language is ML
- Tactics can be programmed to analyze goals, and perform more intelligent tasks

Styles of reasoning in NuPRL

- Proofs are interactive, and refined
- Prove something is true (inhabited by some program)
- Prove something is well-formed (that it is a sensible assertion)
 - Well-formedness is a major component of proving
 - The well-formedness a cking is delayed
 - A theorem must be verified to be well-formed as it is proved
 - *Example:* to prove $A \Rightarrow B$, prove A is a proposition, then assume A and prove B
 - This style differs from other major type theories
 - Well-formedness is undecidable, but the type system is quite expressive
 - Not true that if a term is well-formed, then so is every subterm
 - $\bullet \qquad \text{Void} \to (1 + Z)$

Provided Tactics

• Auto : tactic

- Performs default well-formedness reasoning (gets most cases)
- Performs simple logical reasoning
- Tries to limit search so that every step gets closer to a proof

 \rightarrow tactic

- "Decompose" a clause
- on 0, performs an *introduction*
- on a hyp, performs an *elimination*, case anlysis or induction
- NatInd : int tactic
 - better form of elimination and Snapural frum beau ic

_

Perform reasoning about arithmetic

- Linear systems of equations•

 \rightarrow int \rightarrow tactic

Provided Tacticals

- A tactical is a function taking a tactic as an argument
- Tac1 **THEN** Tac2
 - Run Tac1 on goal, then run Tac2 on all subgoals
- Tac1 **THENW** Tac2
 - Run Tac1 on goal, then run Tac2 on all well-formedness subgoals
- Tac1 **ORELSE** Tac2
 - Run Tac1 on goal. If it fails, run Tac2
- Also have:
 - functions to examine terms
 - _

Editor

- What are the objects of the system?
 - Definitions
 - Rules

Theorems

- Comments

Code

Library

- Library window displays loaded objects
- Organized into *theories*
 - Linear list of items
 - Begins with comment object called **name_begin**
 - Ends with comment object cal.67dhame_end
- One liner for each item
 - Status *: correct and complete, #: partial, -: inco 0ect-

Туре

- C: comment, D: display form, T: theorem, A: abstraction, R: rule, M: ML code
- lower case if object has not been checked
- Synopsis first line of contents

Display Forms

- Terms may be:
 - primitive, like $\lambda v.b(lambda{}(v.b))$, or $Z(int{}())$
 - defined, like let v = e in b let{}(.e; v.b) $\rightarrow (\lambda v.b)(e)$
- A display form may be defined for any term
- Specifies how the term should be printed

LHS contains printing uncerves

- Slots describe areas for terms
- When the term is constructed, the user is prompted for input in the slots
- Special instructions for line breaking, parenthesizathe sn, etc.

• Abstractions usually have a well-formedness theorem

			6	
			1	
			6 -	
:			, , , , , , , , , , , , , , , , , , ,	
,				
		1	,	
38777				
1			j,	

Larger Example

Large Well-formedness

• Well-formedness is quantified by types of arguments

۱ <u> </u>	
,	
;	,
ι	1

Term Editor Commands

- Large assortment of commands for editing terms
- Use either keyboard or mouse
- To get a new term, type the name of its display form (usually the operator name)
 - ^F moves *forward*, ^B moves *back*
 - ^P moves *up* the term tree
 - ^O opens

Refinement

- ^O opens goal or subgoal term or rule box
- ^O edits the main goal of a theorem
- Type tactic into rule box
- ^Z closes and *checks* a term or rule box
 - Set the goal
 - Runs the tactic to produce subgoals

CORNELL UNIVERSITY

Summary

- Nuprl is a system for developing formal mathematics
- Formalism is based on *type theory* (logic + computation)
- System is designed to assist and automate the formalization
- Three parts:
 - Refiner (for checking and inferring proofs)
 - Library (for storing rules, definitions, and proofs)
 - Editor (human interface for editing object in the library)
- Refiner uses ML as a *tactic* language
- Editor works directrly on the term tree
 - -Structured editing

_

Where to go from here

- Documentation
 - Nuprl book
 - Web site (http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html)
 - Nuprl book
 - Nuprl 4.2 reference manual
 - Nupme 4.2 tutorial
 - Library browser
- To use Nupml
 - ExNo ecuteuprl/bin/run-nuprl
 - Use large SunOS machine, like gemini or virgo
 - xhost the machine you are running from
 - It does run on Solaris, just not officially supported

