Nuprl Tutorial

Jason Hickey
Cornell University
February 2, 1997

10f31

CORNELL UNIVERSITY

Outline

 What are:
—the goals

—the philosophy

—the domain

—of NuPRL
 Interactive Theorem Proving
e System

— Architecture
—Logic “engine”
— User interface

20f31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Philosophy

Formalize & implemeninathematicandcomputation
Assistthe implementor
Logic/type theory is the formal language of choice
—Possible to derive algorithms without ever writing a program
— Programming comes as a by-product
Truth of statements is undecidable
— Proofs are by interaction
— A great deal ofssistances available (checking, prompting, documenting)
— Someautomationavailable

— System goals:
¢ develop automation as well as math domains
¢ make the user interface comfortable

Jason Hickey
November 2, 1995

30f31

CORNELL UNIVERSITY

Logic & Type Theory

How can mathematics be formalized?
Use a logic with statements, assertions, and inference rules
Constructive type theory: higher order logic + computation
— Types provide specifications for programs
—Types are assertions
— Programs can be derived from proofs, or can be shown to inhabit types
Types (specifications/assertions/propositions):
—\oid, Int, * list
— Equality
— Functions (x:A- B), Products (x:Ax B), Disjoint Unions (A + B)
—Type universes (Ui is all types at level i, DiU{i + 1})

4 0of 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Types |

» Function space
—[Oi:N.i1=0

50f31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Types Il

» Type universes

Jason Hickey
November 2, 1995

6 of 31

CORNELL UNIVERSITY

Seguents

Sequent: aH;, &:H,, ..., 8;H,|— G
—H, is a type
—for any g [Hq, Hyla4] is a type
—forany g O Hq, ..., 8.1 0 Hyqlag, -, &0, Hi[8q,-.-,84.1] IS & type
—forana,OHq, ..., a0H &y, ..., 81, Gl&y, ..., &] is atype, and it is true
Functionality
—for any g, b; U Hq, Hy[a4] and Hy[b4] are equal types

Jason Hickey
November 2, 1995

7 of 31

Argume

CORNELL UNIVERSITY

2Nts

Rules

« Arule is an implication on sequents:

Jason Hickey
November 2, 1995

8 of 31

CORNELL UNIVERSITY

Syntax Examples

Number:1 = natural_number{1:n}

Variable:x = variable{x:v}

Summationi +j =add{}(.variable{i:v}; .variable{j:v})
Abstractionax.x + 1=lambda{}(x.x + 1)

Jason Hickey
November 2, 1995

10 of 31

CORNELL UNIVERSITY

User Model

* The user builds domains by:
— creating definitions of:
¢ TYTEC
¢ UETNO0OC
¢ TIPOTEPTIED
[l wepi@Pivy poTepTIEthBorems
* The interface is interactive
— As opposed to batch Al first order theorem provers
— Premises are complex
— Backward chaining (goal oriented)
¢ 2UTOAY TNE YOOA 0@ O TNEOPEU
¢ Pell vat with a rule or a tactic to generate subgoals
Prove the subgoals

Jason Hickey
November 2, 1995

11 of 31

CORNELL UNIVERSITY

Example Proof Step

Jason Hickey
November 2, 1995

12 of 31

CORNELL UNIVERSITY

System Architecture

* Refiner enforces the logic
» Library mantains database of definitions and inference steps
« Editor provides a user interface

13 of 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Refiner

14 of 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Tactics

» Refiner may also providetactic language
* In NuPRL, the language is ML
« Tactics can be programmed to analyze goals, and perform more intelligen'f;; -

15 of 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Styles of reasoning in NUPRL

* Proofs are interactive, and refined

 Prove ,ggm,%t@i&g—,&ﬁw& LDaRYSHRGTRNE PI8Y EMMsible assertion)

Well-formedness is a major component of proving
— The well-formedness a cking is delayed
— A theorem must be verified to be well-formed as it is proved
— Example:to prove ALl B, prove A is a proposition, then assume A and prove B
— This style differs from other major type theories
— Well-formedness is undecidable, but the type system is quite expressive

—Not true that if a term is well-formed, then so is every subterm
¢ Void - (1 + 2)

16 of 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Provided Tactics

Auto : tactic

— Performs default well-formedness reasoning (gets most cases)

— Performs simple logical reasoning

— TriBs:timlimit search so that every step gets closer to a proof

- tactic

—“Decompose” a clause

—on 0, performs amtroduction

—on a hyp, performs aglimination case anlysis or induction
Natind : int tactic

— betieittiartaaticeliminatiandSupattirabhotiecnbers

Perform reasoning about arithmetic
— LinR" systens of equations
~int - tactic

Jason Hickey
November 2, 1995

17 of 31

CORNELL UNIVERSITY

Provided Tacticals

A tactical is a function taking a tactic as an argument
Tacl THENTac?2
—Run Tacl on goal, then run Tac2 on all subgoals
Tacl THENWac2
—Run Tacl on goal, then run Tac2 on all well-formedness subgoals
Tacl ORELSETac?2
—Run Tacl on goal. If it fails, run Tac2
Also have:

—functions to examine terms

Jason Hickey
November 2, 1995

18 of 31

CORNELL UNIVERSITY

Editor

What are the objects of the system?
— Definitions
—Rules—
Theorems

— Comments—
Coflkof them contain terms
» Structured editing of terms
» Each term may havedsplay form

19 of 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Library

» Library window displays loaded objects

Organized intdheories
—Linear list of items

Begins with comment object

calleame_begin

— Ends with comment object cal.6ade end

One liner for each item

— Status*: correct and complete, #: partial, -: inco Oect—

Type

¢ C:comment, D: display form, T: theorem, A: abstraction, R: rule, M: ML code
¢ lower case if object has not been checked

— Synopsisfirst line of contents

Jason Hickey
November 2, 1995

20 0f 31

CORNELL UNIVERSITY

Library Window

21 of 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Display Forms

 Terms may be:
— primitive, like Av.b (lambda{}(v.b)), orZ(int}())

—defined likeletv=einb
let{}(.e; v.b) - (Av.b)(e)

» A display form may be defined for any term
» Specifies how the term should be printed

L HS contains printing directives

Slots describe areas for terms

When the term is constructed, the user is prompted for input in the slots
Special instructions for line breaking, parenthesizathe sn, etc.

22 of 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Abstractions

» Definitions are made throug24 Qactions

the defined/definition; the redex/contractum

ABS zlet Ewrigel.cs.comell.edu

« Often used to define more complex types:

wlsddaps Euul_@ﬁuel.g‘_ﬁ.:nmmumlhgjﬁi :

r

il

23 0f 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Abstraction Well-formedness

» Abstractions usually have a well-formedness theorem

24 of 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Larger Example

Jason Hickey 25 of 31
November 2, 1995

CORNELL UNIVERSITY

Large Well-formedness

» Well-formedness is quantified by types of arguments

by
l
%.
)

Jason Hickey
November 2, 1995

26 of 31

CORNELL UNIVERSITY

Term Editor Commands

» Large assortment of commands for editing terms
» Use either keyboard or mouse

* To get a new term, type the name of its display form (usually the operator name)

—F movedorward, *"B moveshack
— /P movesaup the term tree

—"O opens

Jason Hickey
November 2, 1995

27 of 31

\ CORNELL UNIVERSITY

Refinement (Prd) Editor

N —

e A window into a prd f of a theorewq hasfQur parts:

28 of 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Refinement

O opens goal or subgoal term or rule box
O edits the main goal of a theorem

Type tactic into rule box

~Z closes an@hecksa term or rule box

— Set the goal
— Runs the tactic to produce subgoals

29 of 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Summary

Nuprl is a system for developing formal mathematics
Formalism is based dgipe theorylogic + computation)
System is designed to assist and automate the formalization

Three parts:
— Refiner (for checking and inferring proofs)
—Library (for storing rules, definitions, and proofs)
— Editor (human interface for editing object in the library)
Refiner uses ML astactic language
Editor works directrly on the term tree
—Structured editing
Display forms for terms —

300f 31

Jason Hickey
November 2, 1995

CORNELL UNIVERSITY

Where to go from here

* Documentation
— Nuprl book
—Web site (http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html)
¢ Nuprl book
¢ Nuprl 4.2 reference manual
¢ Nupme 4.2 tutorial
¢ Library browser
 To use Nupml
— ExNo eeutaprl/bin/run-nuprl

—Use large SunOS machine, ligemini or virgo
—xhost the machine you are running from
— It does run on Solaris, just not officially supported

31 0f 31

Jason Hickey
November 2, 1995

	Nuprl Tutorial
	Jason Hickey
	Cornell University
	February 2, 1997

	Outline
	• What are:
	— the goals
	— the philosophy
	— the domain
	— of NuPRL

	• Interactive Theorem Proving
	• System
	— Architecture
	— Logic “engine”
	— User interface

	Philosophy
	• Formalize & implement mathematics and computatio...
	• Assist the implementor
	• Logic/type theory is the formal language of choi...
	— Possible to derive algorithms without ever writi...
	— Programming comes as a by-product

	• Truth of statements is undecidable
	— Proofs are by interaction
	— A great deal of assistance is available (checkin...
	— Some automation available
	— System goals:
	develop automation as well as math domains
	make the user interface comfortable

	Logic & Type Theory
	• How can mathematics be formalized?
	• Use a logic with statements, assertions, and inf...
	• Constructive type theory: higher order logic + c...
	— Types provide specifications for programs
	— Types are assertions
	— Programs can be derived from proofs, or can be s...

	• Types (specifications/assertions/propositions):
	— Void, Int, * list
	— Equality
	— Functions (x:A Æ B), Products (x:A ¥ B), Disjoin...
	— Type universes (Ui is all types at level i, Ui Œ...

	Types I
	• Function space
	— "i:N. i ³ 0
	— i:N Æ i ³ 0
	— i:N Æ {iº}

	• Product space
	— $i:N. TM(i) halts
	— "i:N. $j:N. j * j £ i Ÿ (j + 1) * (j + 1) > i
	— i:N Æ j:N ¥ (j * j £ i) ¥ ((j + 1) * (j + 1) > i...

	• Disjoint union
	— A + B
	— "i:N. TM(i) halts ⁄ ØTM(i) halts

	Types II
	• Type universes
	— Ui is all types/propositions to level i
	— Z, Void Œ U1
	— A, B Œ Ui ﬁ x:A Æ B Œ Ui, etc
	— "P:N Æ Ui. P(0) ﬁ ("i:N.P(i) ﬁ P(i + 1)) ﬁ ("i:N...
	— Ui Œ U{i + 1}

	• Set
	— car:Ui ¥ insert:Z Æ car ¥ member: Z Æ car Æ Ui ¥...

	• Equality types
	— a = b Œ T
	— T is a well-formed type
	— a and b are well-formed elements of T
	— a and b are equal elements in T
	— membership: a = a Œ T means a Œ T

	Sequents
	• Sequent: a1:H1, a2:H2, º, an:Hn — G
	— H1 is a type
	— for any a1 Œ H1, H2[a1] is a type
	— ···
	— for any a1 Œ H1, º, an-1 Œ Hn-1[a1, º, an-2], Hn...
	— for any a1 Œ H1, º, an Œ Hn[a1, º, an-1], G[a1, ...

	• Functionality
	— for any a1, b1 Œ H1, H2[a1] and H2[b1] are equal...
	— ···

	Rules
	• A rule is an implication on sequents:

	Syntax
	• Everything is a term:
	— term ::= opname{params}(bterms)
	— opname ::= <string>
	— params ::= e paramlist
	— paramlist ::= param paramlist , param
	— param ::= <number> : n <string> : s level-ex...
	— bterms ::= e btermlist
	— btermlist ::= bterm btermlist ; bterm
	— bterm ::= vars . term
	— vars ::= e varlist
	— varlist ::= var varlist , var
	— var ::= <string>

	Syntax Examples
	• Number: 1 º natural_number{1:n}
	• Variable: x º variable{x:v}
	• Summation: i + j º add{}(.variable{i:v}; .variab...
	• Abstraction: lx.x + 1 º lambda{}(x.x + 1)

	User Model
	• The user builds domains by:
	— creating definitions of:
	types
	methods
	properties

	— verifying properties in theorems

	• The interface is interactive
	— As opposed to batch AI first order theorem prove...
	— Premises are complex
	— Backward chaining (goal oriented)
	Supply the goal of a theorem
	Refine it with a rule or a tactic to generate subg...
	Prove the subgoals

	Example Proof Step
	System Architecture
	• Refiner enforces the logic
	• Library mantains database of definitions and inf...
	• Editor provides a user interface

	Refiner
	• Performs refinement according to rule collection...

	Tactics
	• Refiner may also provide a tactic language
	• In NuPRL, the language is ML
	• Tactics can be programmed to analyze goals, and ...

	Styles of reasoning in NuPRL
	• Proofs are interactive, and refined
	• Prove something is true (inhabited by some progr...
	• Prove something is well-formed (that it is a sen...
	— Well-formedness is a major component of proving
	— The well-formedness checking is delayed
	— A theorem must be verified to be well-formed as ...
	— Example: to prove A ﬁ B, prove A is a propositio...
	— This style differs from other major type theorie...
	— Well-formedness is undecidable, but the type sys...
	— Not true that if a term is well-formed, then so ...
	Void Æ (1 + Z)

	Provided Tactics
	• Auto : tactic
	— Performs default well-formedness reasoning (gets...
	— Performs simple logical reasoning
	— Tries to limit search so that every step gets cl...

	• D : int Æ tactic
	— “Decompose” a clause
	— on 0, performs an introduction
	— on a hyp, performs an elimination, case anlysis ...

	• NatInd : int Æ tactic
	— better form of elimination on natural numbers

	• Arith : tactic and SupInf : tactic
	— Perform reasoning about arithmetic
	— Linear systems of equations

	• RW : conv Æ int Æ tactic
	— Rewrites using equivalences or implications

	Provided Tacticals
	• A tactical is a function taking a tactic as an a...
	• Tac1 THEN Tac2
	— Run Tac1 on goal, then run Tac2 on all subgoals

	• Tac1 THENW Tac2
	— Run Tac1 on goal, then run Tac2 on all well-form...

	• Tac1 ORELSE Tac2
	— Run Tac1 on goal. If it fails, run Tac2

	• Also have:
	— functions to examine terms
	— functions to build terms
	— all standard functions in ML

	• Tactics are secure because there is no way to co...

	Editor
	• What are the objects of the system?
	— Definitions
	— Rules
	— Theorems
	— Comments
	— Code

	• All of them contain terms
	• Structured editing of terms
	• Each term may have a display form

	Library
	• Library window displays loaded objects
	• Organized into theories
	— Linear list of items
	— Begins with comment object called name_begin
	— Ends with comment object called name_end

	• One liner for each item
	— Status *: correct and complete, #: partial, -: i...
	— Type
	C: comment, D: display form, T: theorem, A: abstra...
	lower case if object has not been checked

	— Synopsis first line of contents

	Library Window
	Display Forms
	• Terms may be:
	— primitive, like lv.b (lambda{}(v.b)), or Z (int{...
	— defined, like let v = e in b let{}(.e; v.b) Æ (l...

	• A display form may be defined for any term
	• Specifies how the term should be printed
	• LHS contains printing directives
	• Slots describe areas for terms
	• When the term is constructed, the user is prompt...
	• Special instructions for line breaking, parenthe...

	Abstractions
	• Definitions are made through abstractions
	• An abstraction defines a pair of terms that are:...
	— the defined/definition; the redex/contractum

	• Often used to define more complex types:

	Abstraction Well-formedness
	• Abstractions usually have a well-formedness theo...

	Larger Example
	Large Well-formedness
	• Well-formedness is quantified by types of argume...

	Term Editor Commands
	• Large assortment of commands for editing terms
	• Use either keyboard or mouse
	• To get a new term, type the name of its display ...
	— ^F moves forward, ^B moves back
	— ^P moves up the term tree
	— ^O opens a term slot
	in the middle to text (like tactic text)
	in the middle of a term (to add a subterm)

	— ^Xex explodes a term (displays it in canonical f...
	— ^Xim implodes it
	— ^K kills a term, ^Y yanks it back from the kill ...

	Refinement (Proof) Editor
	• A window into a proof of a theorem has four part...

	Refinement
	• ^O opens goal or subgoal term or rule box
	• ^O edits the main goal of a theorem
	• Type tactic into rule box
	• ^Z closes and checks a term or rule box
	— Set the goal
	— Runs the tactic to produce subgoals

	Summary
	• Nuprl is a system for developing formal mathemat...
	• Formalism is based on type theory (logic + compu...
	• System is designed to assist and automate the fo...
	• Three parts:
	— Refiner (for checking and inferring proofs)
	— Library (for storing rules, definitions, and pro...
	— Editor (human interface for editing object in th...

	• Refiner uses ML as a tactic language
	• Editor works directrly on the term tree
	— Structured editing
	— Display forms for terms

	Where to go from here
	• Documentation
	— Nuprl book
	— Web site (http://www.cs.cornell.edu/Info/Project...
	Nuprl book
	Nuprl 4.2 reference manual
	Nuprl 4.2 tutorial
	Library browser

	• To use Nuprl
	— Execute ~nuprl/bin/run-nuprl
	— Use large SunOS machine, like gemini or virgo
	— xhost the machine you are running from
	— It does run on Solaris, just not officially supp...

