
1 of 31

rial

ey
rsity

1997
Nuprl Tuto

Jason Hick
Cornell Unive
February 2,

C O R N E L L U N I V E R S I T Y

2 of 31

Outline
• W

• I

• S
Jason Hickey
November 2, 1995

hat are:

— the goals

— the philosophy

— the domain

—of NuPRL

nteractive Theorem Proving

ystem

—Architecture

—Logic “engine”

—User interface

C O R N E L L U N I V E R S I T Y

3 of 31

Philosophy

rogram

ting, documenting)
• F

•

•

• T
Jason Hickey
November 2, 1995

ormalize & implementmathematics andcomputation

Assist the implementor

Logic/type theory is the formal language of choice

—Possible to derive algorithms without ever writing a p

—Programming comes as a by-product

ruth of statements is undecidable

—Proofs are by interaction

—A great deal ofassistance is available (checking, promp

—Someautomation available

—System goals:

♦ develop automation as well as math domains

♦ make the user interface comfortable

C O R N E L L U N I V E R S I T Y

4 of 31

Logic & Type Theory

ce rules

utation

n to inhabit types

s (A + B)
• H

• U

• C

• T
Jason Hickey
November 2, 1995

ow can mathematics be formalized?

se a logic with statements, assertions, and inferen

onstructive type theory: higher order logic + comp

—Types provide specifications for programs

—Types are assertions

—Programs can be derived from proofs, or can be show

ypes (specifications/assertions/propositions):

—Void, Int, * list

—Equality

—Functions (x:A→ B), Products (x:A× B), Disjoint Union

—Type universes (Ui is all types at level i, Ui∈ U{i + 1})

C O R N E L L U N I V E R S I T Y

5 of 31

Types I
• F

• P

• D
Jason Hickey
November 2, 1995

unction space

— ∀i:Ν. i ≥ 0

— i:N → i ≥ 0

— i:N → {i …}

roduct space

— ∃i:Ν. TM(i) halts

— ∀i:Ν. ∃j:Ν. j * j ≤ i ∧ (j + 1) ∗ (j + 1) > i

— i:Ν → j:Ν × (j * j ≤ i) × ((j + 1) ∗ (j + 1) > i)

isjoint union

—A + B

— ∀i:Ν. TM(i) halts ∨ ¬TM(i) halts

C O R N E L L U N I V E R S I T Y

6 of 31

Types II

)

U{i + 1}
• T

• S

• E
Jason Hickey
November 2, 1995

ype universes

—Ui is all types/propositions to level i

—Z, Void ∈ U1

—A, B ∈ Ui ⇒ x:A → B ∈ Ui, etc

— ∀P:N → Ui. P(0)⇒ (∀i:N.P(i) ⇒ P(i + 1))⇒ (∀i:N. P(i)

—Ui ∈ U{i + 1}

et

—car:Ui × insert:Z→ car× member: Z→ car→ Ui × … ∈

quality types

—a = b∈ T

—T is a well-formed type

—a and b are well-formed elements of T

—a and b are equal elements in T

—membership: a = a∈ T means a∈ T

C O R N E L L U N I V E R S I T Y

7 of 31

Sequents

1] is a type

a type, and it is true
• S

• F
Jason Hickey
November 2, 1995

equent: a1:H1, a2:H2, …, an:Hn |— G

—H1 is a type

— for any a1 ∈ H1, H2[a1] is a type

— •••

— for any a1 ∈ H1, …, an-1 ∈ Hn-1[a1, …, an-2], Hn[a1,…,an-

— for any a1 ∈ H1, …, an ∈ Hn[a1, …, an-1], G[a1, …, an] is

unctionality

— for any a1, b1 ∈ H1, H2[a1] and H2[b1] are equal types

— •••

C O R N E L L U N I V E R S I T Y

8 of 31

l Arguments
• A r
Jason Hickey
November 2, 1995

Rules

ule is an implication on sequents:

GoaName

Subgoals

C O R N E L L U N I V E R S I T Y

9 of 31

•
(.a; x.b[x]; x,y . b[x,y])

inding vars bound term
Everythin

— term

—opna

—para

—para

—para

—bterm

—bterm

—bterm

—vars

—varlis

—var ::
Jason Hickey
November 2, 1995

Syntax

g is aterm:

 ::= opname{params}(bterms)

me ::= <string>

ms ::=ε | paramlist

mlist ::= param | paramlist , param

m ::= <number> : n | <string> : s | level-exp : l |…

s ::=ε | btermlist

list ::= bterm | btermlist ; bterm

 ::= vars . term

::=ε | varlist

t ::= var | varlist , var

= <string>

opname { 1 : n ,i:l}

b
name

param value
param type

C O R N E L L U N I V E R S I T Y

10 of 31

Syntax Examples

})
• N

•

•

•

Jason Hickey
November 2, 1995

umber:1 ≡ natural_number{1:n}

Variable:x ≡ variable{x:v}

Summation:i + j ≡ add{}(.variable{i:v}; .variable{j:v

Abstraction:λx.x + 1≡ lambda{}(x.x + 1)

C O R N E L L U N I V E R S I T Y

11 of 31

User Model

als
• T

• T
Jason Hickey
November 2, 1995

he user builds domains by:

—creating definitions of:

♦ types

♦ methods

♦ properties

—verifying properties intheorems

he interface is interactive

—As opposed to batch AI first order theorem provers

—Premises are complex

—Backward chaining (goal oriented)

♦ Supply the goal of a theorem

♦ Refine it with a rule or a tactic to generate subgo

♦ Prove the subgoals

C O R N E L L U N I V E R S I T Y

12 of 31

Example Proof Step
Jason Hickey
November 2, 1995

C O R N E L L U N I V E R S I T Y

13 of 31

System Architecture

steps

Editor
• R

• L

• E
Jason Hickey
November 2, 1995

efiner enforces the logic

ibrary mantains database of definitions and inference

ditor provides a user interface

Refiner

(Logic Engine)

Library

C O R N E L L U N I V E R S I T Y

14 of 31

Refiner
• P
Jason Hickey
November 2, 1995

erforms refinement according to rule collection

C O R N E L L U N I V E R S I T Y

15 of 31

Tactics

erform more intelligent tasks
• R

• I

• T
Jason Hickey
November 2, 1995

efiner may also provide atactic language

n NuPRL, the language is ML

actics can be programmed to analyze goals, and p

C O R N E L L U N I V E R S I T Y

16 of 31

Styles of reasoning in NuPRL

)

 assertion)

proved

n assume A and prove B

 is quite expressive

 subterm
• P

• P

• P
Jason Hickey
November 2, 1995

roofs are interactive, and refined

rove something is true (inhabited by some program

rove something is well-formed (that it is a sensible

—Well-formedness is a major component of proving

—The well-formedness checking is delayed

—A theorem must be verified to be well-formed as it is

—Example: to prove A⇒ B, prove A is a proposition, the

—This style differs from other major type theories

—Well-formedness is undecidable, but the type system

—Not true that if a term is well-formed, then so is every

♦ Void → (1 + Z)

C O R N E L L U N I V E R S I T Y

17 of 31

Provided Tactics

ost cases)

a proof

tion
• A

• D

• N

• A

• R
Jason Hickey
November 2, 1995

uto : tactic

—Performs default well-formedness reasoning (gets m

—Performs simple logical reasoning

—Tries to limit search so that every step gets closer to

 : int → tactic

— “Decompose” a clause

—on 0, performs anintroduction

—on a hyp, performs anelimination, case anlysis or induc

atInd : int → tactic

—better form of elimination on natural numbers

rith : tactic andSupInf : tactic

—Perform reasoning about arithmetic

—Linear systems of equations

W : conv → int → tactic

—Rewrites using equivalences or implications

C O R N E L L U N I V E R S I T Y

18 of 31

Provided Tacticals

t

ss subgoals

truct a tactic, except from other
• A

• T

• T

• T

• A

• T
t

Jason Hickey
November 2, 1995

 tactical is a function taking a tactic as an argumen

ac1 THEN Tac2

—Run Tac1 on goal, then run Tac2 on all subgoals

ac1 THENW Tac2

—Run Tac1 on goal, then run Tac2 on all well-formedne

ac1 ORELSE Tac2

—Run Tac1 on goal. If it fails, run Tac2

lso have:

— functions to examine terms

— functions to build terms

—all standard functions in ML

actics are secure because there is no way to cons
actics.

C O R N E L L U N I V E R S I T Y

19 of 31

Editor
• W

• A

• S

• E
Jason Hickey
November 2, 1995

hat are the objects of the system?

—Definitions

—Rules

—Theorems

—Comments

—Code

ll of them contain terms

tructured editing of terms

ach term may have adisplay form

C O R N E L L U N I V E R S I T Y

20 of 31

Library

straction, R: rule, M: ML code
• L

• O

• O
Jason Hickey
November 2, 1995

ibrary window displays loaded objects

rganized intotheories

—Linear list of items

—Begins with comment object calledname_begin

—Ends with comment object calledname_end

ne liner for each item

—Status *: correct and complete, #: partial, -: incorrect

—Type

♦ C: comment, D: display form, T: theorem, A: ab

♦ lower case if object has not been checked

—Synopsis first line of contents

C O R N E L L U N I V E R S I T Y

21 of 31
Jason Hickey
November 2, 1995

Library Window

C O R N E L L U N I V E R S I T Y

22 of 31

Display Forms

)

 for input in the slots

ion, etc.
• T

• A

• S

• L

• S

• W

• S
Jason Hickey
November 2, 1995

erms may be:

—primitive , like λv.b (lambda{}(v.b)), orZ (int{}()

—defined, like let v = e in b
let{}(.e; v.b) → (λv.b)(e)

 display form may be defined for any term

pecifies how the term should be printed

HS contains printing directives

lots describe areas for terms

hen the term is constructed, the user is prompted

pecial instructions for line breaking, parenthesizat

C O R N E L L U N I V E R S I T Y

23 of 31

Abstractions
• D

•

• O
Jason Hickey
November 2, 1995

efinitions are made throughabstractions

An abstraction defines a pair of terms that are:

— the defined/definition; the redex/contractum

ften used to define more complex types:

C O R N E L L U N I V E R S I T Y

24 of 31

Abstraction Well-formedness

m
• A
Jason Hickey
November 2, 1995

bstractions usually have a well-formedness theore

25 of 31
C O R N E L L U N I V E R S I T Y

Jason Hickey
November 2, 1995

Larger Example

C O R N E L L U N I V E R S I T Y

26 of 31

Large Well-formedness

s
• W
Jason Hickey
November 2, 1995

ell-formedness is quantified by types of argument

C O R N E L L U N I V E R S I T Y

27 of 31

Term Editor Commands

 (usually the operator name)
• L

• U

• T
Jason Hickey
November 2, 1995

arge assortment of commands for editing terms

se either keyboard or mouse

o get a new term, type the name of its display form

— ^F movesforward, ^B movesback

— ^P movesup the term tree

— ^O opens a term slot

♦ in the middle to text (like tactic text)

♦ in the middle of a term (to add a subterm)

— ^Xex explodes a term (displays it in canonical form)

— ^Xim implodes it

— ^K kills a term, ^Yyanks it back from the kill ring

C O R N E L L U N I V E R S I T Y

28 of 31

•
 A window

Rul
Jason Hickey
November 2, 1995

Refinement (Proof) Editor

 into a proof of a theorem has four parts:

Status Goal

e

Subgoal

C O R N E L L U N I V E R S I T Y

29 of 31

Refinement
• ^

• ^

• T

• ^
Jason Hickey
November 2, 1995

O opens goal or subgoal term or rule box

O edits the main goal of a theorem

ype tactic into rule box

Z closes andchecks a term or rule box

—Set the goal

—Runs the tactic to produce subgoals

C O R N E L L U N I V E R S I T Y

30 of 31

Summary

s

)

alization

y)
• N

• F

•

•

• R

•

Jason Hickey
November 2, 1995

uprl is a system for developing formal mathematic

ormalism is based ontype theory (logic + computation

System is designed to assist and automate the form

Three parts:

—Refiner (for checking and inferring proofs)

—Library (for storing rules, definitions, and proofs)

—Editor (human interface for editing object in the librar

efiner uses ML as atactic language

Editor works directrly on the term tree

—Structured editing

—Display forms for terms

C O R N E L L U N I V E R S I T Y

31 of 31

Where to go from here

rl/nuprl.html)
• D

• T
Jason Hickey
November 2, 1995

ocumentation

—Nuprl book

—Web site (http://www.cs.cornell.edu/Info/Projects/NuP

♦ Nuprl book

♦ Nuprl 4.2 reference manual

♦ Nuprl 4.2 tutorial

♦ Library browser

o use Nuprl

—Execute~nuprl/bin/run-nuprl

—Use large SunOS machine, likegemini or virgo

—xhost the machine you are running from

— It does run on Solaris, just not officially supported

	Nuprl Tutorial
	Jason Hickey
	Cornell University
	February 2, 1997

	Outline
	• What are:
	— the goals
	— the philosophy
	— the domain
	— of NuPRL

	• Interactive Theorem Proving
	• System
	— Architecture
	— Logic “engine”
	— User interface

	Philosophy
	• Formalize & implement mathematics and computatio...
	• Assist the implementor
	• Logic/type theory is the formal language of choi...
	— Possible to derive algorithms without ever writi...
	— Programming comes as a by-product

	• Truth of statements is undecidable
	— Proofs are by interaction
	— A great deal of assistance is available (checkin...
	— Some automation available
	— System goals:
	develop automation as well as math domains
	make the user interface comfortable

	Logic & Type Theory
	• How can mathematics be formalized?
	• Use a logic with statements, assertions, and inf...
	• Constructive type theory: higher order logic + c...
	— Types provide specifications for programs
	— Types are assertions
	— Programs can be derived from proofs, or can be s...

	• Types (specifications/assertions/propositions):
	— Void, Int, * list
	— Equality
	— Functions (x:A Æ B), Products (x:A ¥ B), Disjoin...
	— Type universes (Ui is all types at level i, Ui Œ...

	Types I
	• Function space
	— "i:N. i ³ 0
	— i:N Æ i ³ 0
	— i:N Æ {iº}

	• Product space
	— $i:N. TM(i) halts
	— "i:N. $j:N. j * j £ i Ÿ (j + 1) * (j + 1) > i
	— i:N Æ j:N ¥ (j * j £ i) ¥ ((j + 1) * (j + 1) > i...

	• Disjoint union
	— A + B
	— "i:N. TM(i) halts ⁄ ØTM(i) halts

	Types II
	• Type universes
	— Ui is all types/propositions to level i
	— Z, Void Œ U1
	— A, B Œ Ui ﬁ x:A Æ B Œ Ui, etc
	— "P:N Æ Ui. P(0) ﬁ ("i:N.P(i) ﬁ P(i + 1)) ﬁ ("i:N...
	— Ui Œ U{i + 1}

	• Set
	— car:Ui ¥ insert:Z Æ car ¥ member: Z Æ car Æ Ui ¥...

	• Equality types
	— a = b Œ T
	— T is a well-formed type
	— a and b are well-formed elements of T
	— a and b are equal elements in T
	— membership: a = a Œ T means a Œ T

	Sequents
	• Sequent: a1:H1, a2:H2, º, an:Hn |— G
	— H1 is a type
	— for any a1 Œ H1, H2[a1] is a type
	— ···
	— for any a1 Œ H1, º, an-1 Œ Hn-1[a1, º, an-2], Hn...
	— for any a1 Œ H1, º, an Œ Hn[a1, º, an-1], G[a1, ...

	• Functionality
	— for any a1, b1 Œ H1, H2[a1] and H2[b1] are equal...
	— ···

	Rules
	• A rule is an implication on sequents:

	Syntax
	• Everything is a term:
	— term ::= opname{params}(bterms)
	— opname ::= <string>
	— params ::= e | paramlist
	— paramlist ::= param | paramlist , param
	— param ::= <number> : n | <string> : s | level-ex...
	— bterms ::= e | btermlist
	— btermlist ::= bterm | btermlist ; bterm
	— bterm ::= vars . term
	— vars ::= e | varlist
	— varlist ::= var | varlist , var
	— var ::= <string>

	Syntax Examples
	• Number: 1 º natural_number{1:n}
	• Variable: x º variable{x:v}
	• Summation: i + j º add{}(.variable{i:v}; .variab...
	• Abstraction: lx.x + 1 º lambda{}(x.x + 1)

	User Model
	• The user builds domains by:
	— creating definitions of:
	types
	methods
	properties

	— verifying properties in theorems

	• The interface is interactive
	— As opposed to batch AI first order theorem prove...
	— Premises are complex
	— Backward chaining (goal oriented)
	Supply the goal of a theorem
	Refine it with a rule or a tactic to generate subg...
	Prove the subgoals

	Example Proof Step
	System Architecture
	• Refiner enforces the logic
	• Library mantains database of definitions and inf...
	• Editor provides a user interface

	Refiner
	• Performs refinement according to rule collection...

	Tactics
	• Refiner may also provide a tactic language
	• In NuPRL, the language is ML
	• Tactics can be programmed to analyze goals, and ...

	Styles of reasoning in NuPRL
	• Proofs are interactive, and refined
	• Prove something is true (inhabited by some progr...
	• Prove something is well-formed (that it is a sen...
	— Well-formedness is a major component of proving
	— The well-formedness checking is delayed
	— A theorem must be verified to be well-formed as ...
	— Example: to prove A ﬁ B, prove A is a propositio...
	— This style differs from other major type theorie...
	— Well-formedness is undecidable, but the type sys...
	— Not true that if a term is well-formed, then so ...
	Void Æ (1 + Z)

	Provided Tactics
	• Auto : tactic
	— Performs default well-formedness reasoning (gets...
	— Performs simple logical reasoning
	— Tries to limit search so that every step gets cl...

	• D : int Æ tactic
	— “Decompose” a clause
	— on 0, performs an introduction
	— on a hyp, performs an elimination, case anlysis ...

	• NatInd : int Æ tactic
	— better form of elimination on natural numbers

	• Arith : tactic and SupInf : tactic
	— Perform reasoning about arithmetic
	— Linear systems of equations

	• RW : conv Æ int Æ tactic
	— Rewrites using equivalences or implications

	Provided Tacticals
	• A tactical is a function taking a tactic as an a...
	• Tac1 THEN Tac2
	— Run Tac1 on goal, then run Tac2 on all subgoals

	• Tac1 THENW Tac2
	— Run Tac1 on goal, then run Tac2 on all well-form...

	• Tac1 ORELSE Tac2
	— Run Tac1 on goal. If it fails, run Tac2

	• Also have:
	— functions to examine terms
	— functions to build terms
	— all standard functions in ML

	• Tactics are secure because there is no way to co...

	Editor
	• What are the objects of the system?
	— Definitions
	— Rules
	— Theorems
	— Comments
	— Code

	• All of them contain terms
	• Structured editing of terms
	• Each term may have a display form

	Library
	• Library window displays loaded objects
	• Organized into theories
	— Linear list of items
	— Begins with comment object called name_begin
	— Ends with comment object called name_end

	• One liner for each item
	— Status *: correct and complete, #: partial, -: i...
	— Type
	C: comment, D: display form, T: theorem, A: abstra...
	lower case if object has not been checked

	— Synopsis first line of contents

	Library Window
	Display Forms
	• Terms may be:
	— primitive, like lv.b (lambda{}(v.b)), or Z (int{...
	— defined, like let v = e in b let{}(.e; v.b) Æ (l...

	• A display form may be defined for any term
	• Specifies how the term should be printed
	• LHS contains printing directives
	• Slots describe areas for terms
	• When the term is constructed, the user is prompt...
	• Special instructions for line breaking, parenthe...

	Abstractions
	• Definitions are made through abstractions
	• An abstraction defines a pair of terms that are:...
	— the defined/definition; the redex/contractum

	• Often used to define more complex types:

	Abstraction Well-formedness
	• Abstractions usually have a well-formedness theo...

	Larger Example
	Large Well-formedness
	• Well-formedness is quantified by types of argume...

	Term Editor Commands
	• Large assortment of commands for editing terms
	• Use either keyboard or mouse
	• To get a new term, type the name of its display ...
	— ^F moves forward, ^B moves back
	— ^P moves up the term tree
	— ^O opens a term slot
	in the middle to text (like tactic text)
	in the middle of a term (to add a subterm)

	— ^Xex explodes a term (displays it in canonical f...
	— ^Xim implodes it
	— ^K kills a term, ^Y yanks it back from the kill ...

	Refinement (Proof) Editor
	• A window into a proof of a theorem has four part...

	Refinement
	• ^O opens goal or subgoal term or rule box
	• ^O edits the main goal of a theorem
	• Type tactic into rule box
	• ^Z closes and checks a term or rule box
	— Set the goal
	— Runs the tactic to produce subgoals

	Summary
	• Nuprl is a system for developing formal mathemat...
	• Formalism is based on type theory (logic + compu...
	• System is designed to assist and automate the fo...
	• Three parts:
	— Refiner (for checking and inferring proofs)
	— Library (for storing rules, definitions, and pro...
	— Editor (human interface for editing object in th...

	• Refiner uses ML as a tactic language
	• Editor works directrly on the term tree
	— Structured editing
	— Display forms for terms

	Where to go from here
	• Documentation
	— Nuprl book
	— Web site (http://www.cs.cornell.edu/Info/Project...
	Nuprl book
	Nuprl 4.2 reference manual
	Nuprl 4.2 tutorial
	Library browser

	• To use Nuprl
	— Execute ~nuprl/bin/run-nuprl
	— Use large SunOS machine, like gemini or virgo
	— xhost the machine you are running from
	— It does run on Solaris, just not officially supp...

