Nuprl Tutorial Jason Hickey Cornell University February 2, 1997

Outline

- What are:
 - the goals
 - the philosophy
 - the domain
 - of NuPRL
- Interactive Theorem Proving
- System
 - Architecture
 - Logic "engine"
 - User interface

```
∀a:{i:Z| (i ≤ 0)}. ∀!
∀i:Z. ∀j:{k:Z| k ≠ 0
                                         rem_bnd_thm3
  uprl/nuprl4.1/doc/admin
                                     *t div_rem_sum_thm
                                     -T divides_thm1
*t divides_thm2
                                                                         ∀i,j,1:Ž. ∀k:{1:Z| 1
                                                                         \forall i, j, 1: \mathbb{Z}. \ \forall k: \{1: \mathbb{Z} \mid 1\}
                                         div zero thm
                                                                         ¥i.fi.71 i ≠ 0 c 7}
                   THM divides thm1 @ rigel.cs.comell.edu
           \vdash \ \forall i,j,l:\mathbb{Z}. \ \forall k:\{l:\mathbb{Z}|\ l\neq 0\in \mathbb{Z}\}.
                 i * k = j * k + 1 rem k \in \mathbb{Z} \Rightarrow i - j = 0 \in \mathbb{Z}
           BY Uni∨CD
                     THENW Auto
  Edit
           1- 1. i : ℤ
                     2. j : Z
3. l : Z
                     4. k : \{1: \mathbb{Z} | 1 \neq 0 \in \mathbb{Z}\}
  has
                     5. i * k = j * k + 1 rem k \in \mathbb{Z}
 fer ext
                     F i − j = 0 ∈ Z
  ;;
 ;;
 .ODED<<test{}(.lterm)
                                                                         \forall i: \mathbb{Z}. \ \forall j: \{k: \mathbb{Z} | \ k \neq 0 \}
\forall i, j: \mathbb{Z}. \ i * j = 0 \in
                                     *t int_div_mul_thm
 ing -> unit)
                                     *t int_mul_zero_thm
                                    *t int_lt_thm
*t int_gt_thm
*t div_ident
                                                                         \foralln,m:Z. 0 < n - m \Rightarrow \foralln,m:Z. n - m < 0 \Rightarrow \forall
 lename "sqrt_2" "∽/nu
                                                                         \forall a : \mathbb{Z}. \ a \div 1 = a \in \mathbb{Z}
                                                                         Parens :: Prec(div)::
                                     *D power_df
ect(s) loaded.
                                     *M power_ml
                                                                         % Take n to the powr
me = 24.86 seconds
                                     *t power wf
                                                                         ∀n:N. ∀m:Z. n^m ∈ N
   = 8.39 seconds
                                    *t comb_for_power_wf
*t power wf?
                                                                         (λπ,m,z.π^m) ∈ n:N -
    = 7.51 seconds
```

Philosophy

- Formalize & implement *mathematics* and *computation*
- *Assist* the implementor
- Logic/type theory is the formal language of choice
 - Possible to derive algorithms without ever writing a program
 - Programming comes as a by-product
- Truth of statements is undecidable
 - Proofs are by interaction
 - A great deal of *assistance* is available (checking, prompting, documenting)
 - Some *automation* available
 - System goals:
 - ♦ develop automation as well as math domains
 - ♦ make the user interface comfortable

Logic & Type Theory

- How can mathematics be formalized?
- Use a logic with statements, assertions, and inference rules
- Constructive type theory: higher order logic + computation
 - Types provide specifications for programs
 - Types are assertions
 - Programs can be derived from proofs, or can be shown to inhabit types
- Types (specifications/assertions/propositions):
 - Void, Int, * list
 - Equality
 - Functions (x:A \rightarrow B), Products (x:A \times B), Disjoint Unions (A + B)
 - Type universes (Ui is all types at level i, Ui \in U{i + 1})

Types I

- Function space
 - \forall i:N. i ≥ 0
 - $-i:N \rightarrow i \ge 0$
 - $-i:N \rightarrow \{i...\}$
- Product space
 - ∃i:N. TM(i) halts
 - $\forall i$:N. $\exists j$:N. j * j ≤ i ∧ (j + 1) * (j + 1) > i
 - $i:N \rightarrow j:N \times (j * j \le i) \times ((j+1) * (j+1) > i)$
- Disjoint union
 - -A+B
 - \forall i:N. TM(i) halts ∨ ¬TM(i) halts

Types II

- Type universes
 - Ui is all types/propositions to level i
 - **-** Z, Void ∈ U1
 - A, B \in Ui \Rightarrow x:A \rightarrow B \in Ui, etc
 - \forall P:N → Ui. P(0) \Rightarrow (\forall i:N.P(i) \Rightarrow P(i + 1)) \Rightarrow (\forall i:N. P(i))
 - **−** $Ui \in U\{i+1\}$
- Set
 - $car:Ui \times insert:Z \rightarrow car \times member: Z \rightarrow car \rightarrow Ui \times ... \in U\{i+1\}$
- Equality types
 - $-a=b\in T$
 - T is a well-formed type
 - a and b are well-formed elements of T
 - a and b are equal elements in T
 - membership: $a = a \in T$ means $a \in T$

Sequents

- Sequent: $a_1:H_1, a_2:H_2, ..., a_n:H_n \longrightarrow G$
 - H₁ is a type
 - for any $a_1 \in H_1$, $H_2[a_1]$ is a type
 - •••
 - for any $a_1 \in H_1, ..., a_{n-1} \in H_{n-1}[a_1, ..., a_{n-2}], H_n[a_1, ..., a_{n-1}]$ is a type
 - for any $a_1 \in H_1, ..., a_n \in H_n[a_1, ..., a_{n-1}], G[a_1, ..., a_n]$ is a type, and it is true
- Functionality
 - for any $a_1, b_1 \in H_1$, $H_2[a_1]$ and $H_2[b_1]$ are equal types
 - •••

Rules

• A rule is an implication on sequents:

Syntax

- Everything is a *term*:
 - term ::= opname{params}(bterms)
 - opname ::= <string>
 - params ::= ε | paramlist
 - paramlist ::= param | paramlist , param
 - **–** param ::= <number> : n | <string> : s | level-exp : 1 | ...
 - bterms ::= ε | btermlist
 - btermlist ::= bterm | btermlist ; bterm
 - bterm ::= vars . term
 - vars ::= ε | varlist
 - varlist ::= var | varlist , var
 - **–** var ::= <string>

opname {1:n,i:l}(.a; x.b[x];(x,y). (b[x,y]))

name binding vars bound term param type

Syntax Examples

- Number: 1 = natural_number {1:n}
- Variable: x = variable {x:v}
- Summation: i + j = add{}(.variable{i:v}; .variable{j:v})
- Abstraction: $\lambda x.x + 1 \equiv lambda\{\}(x.x + 1)$

User Model

- The user builds domains by:
 - creating definitions of:
 - **♦** types
 - ♦ methods
 - **♦** properties
 - verifying properties in *theorems*
- The interface is interactive
 - As opposed to batch AI first order theorem provers
 - Premises are complex
 - Backward chaining (goal oriented)
 - ♦ Supply the goal of a theorem
 - ◆ *Refine* it with a rule or a tactic to generate subgoals
 - ♦ Prove the subgoals

Example Proof Step

System Architecture

- Refiner enforces the logic
- Library mantains database of definitions and inference steps
- Editor provides a user interface

13 of 31

Refiner

• Performs refinement according to rule collection

Tactics

- Refiner may also provide a tactic language
- In NuPRL, the language is ML
- Tactics can be programmed to analyze goals, and perform more intelligent tasks


```
# top 1
1. P : P
2. ¬¬¬P
F P + ¬P

BY Sel 2 (D 0)
THENW Auto

1# F ¬P
```

Styles of reasoning in NuPRL

- Proofs are interactive, and refined
- Prove something is true (inhabited by some program)
- Prove something is well-formed (that it is a sensible assertion)
 - Well-formedness is a major component of proving
 - The well-formedness checking is delayed
 - A theorem must be verified to be well-formed as it is proved
 - Example: to prove $A \Rightarrow B$, prove A is a proposition, then assume A and prove B
 - This style differs from other major type theories
 - Well-formedness is undecidable, but the type system is quite expressive
 - Not true that if a term is well-formed, then so is every subterm
 - \bullet Void \rightarrow (1 + Z)

Provided Tactics

- Auto : tactic
 - Performs default well-formedness reasoning (gets most cases)
 - Performs simple logical reasoning
 - Tries to limit search so that every step gets closer to a proof
- D : int → tactic
 - "Decompose" a clause
 - on 0, performs an *introduction*
 - on a hyp, performs an *elimination*, case anlysis or induction
- NatInd : int → tactic
 - better form of elimination on natural numbers
- Arith : tactic and SupInf : tactic
 - Perform reasoning about arithmetic
 - Linear systems of equations
- RW : conv → int → tactic
 - Rewrites using equivalences or implications

Provided Tacticals

- A tactical is a function taking a tactic as an argument
- Tac1 **THEN** Tac2
 - Run Tac1 on goal, then run Tac2 on all subgoals
- Tac1 **THENW** Tac2
 - Run Tac1 on goal, then run Tac2 on all well-formedness subgoals
- Tac1 ORELSE Tac2
 - Run Tac1 on goal. If it fails, run Tac2
- Also have:
 - functions to examine terms
 - functions to build terms
 - all standard functions in ML
- Tactics are secure because there is no way to construct a tactic, except from other tactics.

Editor

- What are the objects of the system?
 - Definitions
 - Rules
 - **–** Theorems
 - Comments
 - Code
- All of them contain terms
- Structured editing of terms
- Each term may have a *display form*

Library

- Library window displays loaded objects
- Organized into *theories*
 - Linear list of items
 - Begins with comment object called name_begin
 - Ends with comment object called **name_**end
- One liner for each item
 - Status *: correct and complete, #: partial, -: incorrect
 - Type
 - ♦ C: comment, D: display form, T: theorem, A: abstraction, R: rule, M: ML code
 - ♦ lower case if object has not been checked
 - Synopsis first line of contents

Library Window

```
*C udp_eid_start ----- begin udp_eid -----

*D udp_eid_type_df UdpEidType== udp_eid_type{}

*A udp_eid_type_df UdpEidType== udp_eid_type{}

*A udp_eid_type UdpEidType == addr:INetAddr × port:Port × Mux

*t udp_eid_type_wf UdpEidType & W1

*D udp_addr_df <t:udp:E>.addr== udp_addr{}(<t>)

*A udp_addr t.addr == t.1

*t udp_addr_wf \forall t:UdpEidType. t.addr & INetAddr

|*D udp_port_df <t:udp:E>.port== udp_port{}(<t>)

*A udp_port t.port == t.2.1

*t udp_port_wf \forall t:UdpEidType. t.port & Port

*D udp_mux_df <t:udp:E>.mux== udp_mux{}(<t>)
```

```
ML top loop @ rigel.cs.comell.edu

M> jump "state_1_begin"|;;
```

21 of 31

Display Forms

- Terms may be:
 - **primitive**, like $\lambda v.b$ (lambda $\{\}(v.b)$), or $Z(int\{\}())$
 - defined, like let v = e in b let $\{\}(.e; v.b) \rightarrow (\lambda v.b)(e)$
- A display form may be defined for any term
- Specifies how the term should be printed

- LHS contains printing directives
- Slots describe areas for terms
- When the term is constructed, the user is prompted for input in the slots
- Special instructions for line breaking, parenthesization, etc.

Abstractions

- Definitions are made through *abstractions*
- An abstraction defines a pair of terms that are:
 - the defined/definition; the redex/contractum

• Often used to define more complex types:

```
ABS bool @ rigel.cs.comell.edu

B == Unit + Unit
```

```
ABS ifthenelse @ rigel.cs.comell.edu

if b then t else f fi

== case b of inl() => t | inr() => f
```

23 of 31

Abstraction Well-formedness

• Abstractions usually have a well-formedness theorem

Larger Example

```
ABS stab_up_hdlr @ rigel.cs.comell.edu
stab up hdlr(event, msg, header)
          == Case(<event, header))
                 Case <
                           my rank ← my rank';
                           nmembers ← nmembers';
                           acks \leftarrow make vect2(nmembers, nmembers, 0);
                           stable ← make_vect(nmembers, 0);
                           ncasts \leftarrow make vect(nmembers, 0);
                           flushing \leftarrow ff;
                           queue.append(stab up(<event, msg>))
                 Case Case <up_event(UpCast, origin = origin), NoHdr> =>
                           /* Update #casts entry and set ack field */
                           ncasts[origin]++;
                           queue.append(stab up(<UpSet(StabilityName,
                                                                                   [upAck(Ack(<origin, ncasts[origin]>))],
                                                                                  event), msg>))
                 Case <.. NoHdr> =>
                           queue.append(stab up(<event, msg>))
                 Default => /* We need a way to fail */ skip
```

Large Well-formedness

• Well-formedness is quantified by types of arguments

```
# top

H Vevent:StabEvent. Vmsg:EventMessage.

Vhdr:StabHeaderType. Vstate:StabilityState.

stab_up_hdlr(event, msg, hdr) StabilityState

& StabilityState

BY UnivCD

1# 1. event : StabEvent

2. msg : EventMessage

3. hdr : StabHeaderType

4. state : StabilityState

H stab_up_hdlr(event, msg, hdr)

StabilityState & StabilityState
```

Term Editor Commands

- Large assortment of commands for editing terms
- Use either keyboard or mouse
- To get a new term, type the name of its display form (usually the operator name)
 - ^F moves *forward*, ^B moves *back*
 - **−** ^P moves *up* the term tree
 - ^O *opens* a term slot
 - in the middle to text (like tactic text)
 - in the middle of a term (to add a subterm)
 - Xex explodes a term (displays it in canonical form)
 - **−** ^Xim *implodes* it
 - ^K kills a term, ^Y yanks it back from the kill ring

Refinement

- ^O opens goal or subgoal term or rule box
- ^O edits the main goal of a theorem
- Type tactic into rule box
- ^Z closes and *checks* a term or rule box
 - Set the goal
 - Runs the tactic to produce subgoals

Summary

- Nuprl is a system for developing formal mathematics
- Formalism is based on *type theory* (logic + computation)
- System is designed to assist and automate the formalization
- Three parts:
 - Refiner (for checking and inferring proofs)
 - Library (for storing rules, definitions, and proofs)
 - Editor (human interface for editing object in the library)
- Refiner uses ML as a *tactic* language
- Editor works directrly on the term tree
 - Structured editing
 - Display forms for terms

Where to go from here

- Documentation
 - Nuprl book
 - Web site (http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html)
 - ♦ Nuprl book
 - ♦ Nuprl 4.2 reference manual
 - ♦ Nuprl 4.2 tutorial
 - ♦ Library browser
- To use Nuprl
 - Execute ~nuprl/bin/run-nuprl
 - Use large SunOS machine, like **gemini** or **virgo**
 - xhost the machine you are running from
 - It does run on Solaris, just not officially supported

