
Typed Memory Management in a Calculus of Capabilities�

Karl Crary
C a r n e g i e M e l l o n U n i v e r s i t y

D a v i d W a l k e r
Cornell University

Greg Morrisett
Cornell University

Abstract

Anincreasingnumberofsystemsrelyonprogramminglan-
guagetechnologytoensuresafetyandsecurityoflow-level
code.Unfortunately,thesesystemstypicallyrelyonacom-
plex,trustedgarbagecollector.Region-basedtypesystems
provide an alternative to garbage collection by making mem-
orymanagementexplicitbutveri�ablysafe.However,ithas
not been clear how to use regions in low-level, type-safe code.

Both Birkedal et al. [4] and Aiken et al.

which states that (when memory has type Ψ, free construc-
tor variables have kinds given by � and free value variables
have types given by Γ) it is legal to execute the term e, pro-
vided that the capability C is held. A related typing judge-
ment is

Ψ;�; Γ; C ‘ d � 0; Γ0; C0

which states that if the capability C

We solve this problem by using bounded quanti�cation
to relate �1, �2 and �. Suppose h has type:

8[�1:Rgn; � :Rgn; � � f�
1

; �+
2 g]:

(�; : : : ; (�; : : :) ! 0 at r 0) ! 0 at r00

If we hold capability f r1g, we may call h by instantiating �1

and �2 with r and instantiating � with fr1g . This instan-

level operations such as the atomic allocation and initializa-
tion of data. In the companion technical report [5], we show

6 Acknowledgements

We would like to thank Lars Birkedal, Martin Elsman,
Dan Grossman, Chris Hawblitzel, Fred SmithmStephanie
Weirich, Steve Zdancewic, and the anonymous reviewers for
their comments and suggestions.

References

[1] Alexander AikenManuel F¨

ACM SIG-

[27] George Necula and Peter Lee. The design and imple-
mentation of a certifying compiler. In ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, pages 333 { 344, Montreal, June 1998.

[28] Simon L. Peyton Jones and Philip Wadler. Imper-
ative functional programming. In Twentieth ACM
Symposium on Principles of Programming Languages,
Charleston, South Carolina, January 1993.

[29] John C. Reynolds. De�nitional interpreters for higher-
order programming languages. In Conference Record
of the 25th Niional ACM Conference , pages 717{740,
Boston, August 1972.

(M; e) 7−! P
If e = then P =
letx = v in e0 (M; e0[v=x])
letx = i p j in e0 (M; e0[(i p j)=x])

letx = h at (handle(�))in e 0 (Mf�:‘ 7! hg; e 0 [�:‘=x])

and � 2 Dom(M) where ‘ 62Dom (M(�))
letx = �i(�:‘) in e0 (M; e0[vi =x])

and � 2 Dom(M) and ‘ 2 Dom(M(�))where M(�:g) = hv

0; : : : ; v n−1 i (0 � i < n)

let newrgn

�; x in e

0 (Mf� 7! fgg; e 0 [�;handle(�)=�; x])
where � 62 M and � 62 e

0

let freergn(handle(�)) in e0 (Mn�; e0)

and � 2 Dom(M)

if00then e2else e3 (M; e2)
if0 ithene2else

� ‘ �0

� ‘ �
� ‘ �0

� ‘ �0; �:�
(� 62 Dom(��0))

� ‘ �0 ��0 ‘ C : Cap

� ‘ �0 ; � � C (� 62 Dom(��0))

� ‘ c : �

� ‘

Ψ;�;Γ ‘ h at r : �

� ‘ �0 ��0 ‘ C : Cap
��0 ‘ Tm6i : Type (for 1 � i � n) � ‘ r : Rgn

Ψ;��0 ; −ff :Tm6 4f; x1:� 1 ; : : : ; xn:T 0 3 4ng; C ‘ e

Ψ ; � ; Γ‘ fix f [�0](C; x1:T061 ; : : : ; xn:T m 6 4n):eat r : T064f

�
Tm64f = 8[�0]:(C; � 1; : : : ; �n)! 0 at r

f; x
1 ; : : : ; xn 62 Dom(Γ)

T 0 2 3

Ψ;�;Γ ‘ vi : T064i (for 1 T 024 i � n) � ‘ r : Rgn

Ψ;�; Γ ‘h v1; : : : ; vn iat r : h� 1; : : : ; �ni at r

	; �; � ‘ h at r : T0640T001‘ T064 0 = T064:Type

Ψ; �; Γ ‘ h at r : T06

Ψ; �; Γ ‘ v : T064

	; �; � ‘ x :�x) = �) 	 ; � ; � ‘ i : int

� ‘h T0641; : : : ; 4ni at � : Type

	; �; � ‘ �:‘ :hTm64

1; : : : ; �ni at T027

T02762 Dom (Ψ))
� ‘8 [�

0]:

