Correct by Construction Attack-
Tolerant Systems

Robert Constable

Mark Bickford
Robbert van Renesse

Cornell University and ATC-NY

DARPA Kickoff Meeting November 3, 2010

Talk Goals

Review our experience and capabilities in
process synthesis and verification

Explain our approach to attack-tolerance

Outline ways we will contribute to CRASH

Outline

Narrative thread — the story
Event Logic and General Process Model
Process Synthesis Methods
Attack-tolerance

approach to immunity and diversity

example: consensus

The Story

The Cornell PRL group is known making it
possible to use constructive proofs as programs
and treat formal mathematics as a programming
language. This has become a practical enterprise
for certain applications.

Since the late 90’s we have wanted to extend this
method to proofs as processes, building protocols
from constructive proofs that specifications are
realizable in a formal theory of distributed
compting.

The Story continued

We started by using IOA as our internal model of
processes. In 2003 we modified IOA to Message
Automata and built an event logic around this
model. These MA used frame conditions to
render composition as union.

Year by year as we tackled harder protocols, we
were forced to express the specifications more
abstractly in order to complete the proofs and
extract protocols.

The Story continued

Now we can create a variety of protocols from
proofs, e.g. consensus (e.g. Simple Consensus,
Paxos), authentication, group membership, etc.

We found unexpected advantages of starting
very abstractly, e.g. we can generate many
provably correct variants at the same time,

providing a basis for attack-tolerance through
diversity.

An Interesting Aside

Our constructive proofs of consensus require proofs
of non-blocking. | discovered that FLP can be proved
constructively for effectively non-blocking protocols.

From Constructive FLP we can build an unbeatable
adversary (attacker) against deterministic consensus.

Specification for Leader Election in a Ring

Given a Ring R of Processes with Unique Identifiers (uid’s)

2
l@ ©

¥

® ®

A
Letn(n) = dst(out(n)), the nextlocation

Let p(i) = n’'(i), the predecessor location

Let d(i,j) = #k > 1.n"(i)=j, the distance from 1i to j
Note 1 = p(j) = d(1,p(G))=d(n,j)-1L

Specification, continued

Leader (R,es) == 3 1dr: R. (Je@ldr. kind(e)=leader) &
(Vi:R. Ve@i. kind(e)=leader = i=ldr)

Theorem V R:List(Loc). Ring(R)
3 D:Dsys(R). Feasible(D) &
Ves: ES. Consistent(D,es). Leader(Res)

Realizing Leader Election

Theorem VR:List(Loc) - RingR)
dD:DsyqR) . FeasibldD).
vVes:Consistent(D, es). (LHR, es) = Leader(R, es))

Proof: Letm = max {uid@i)| i € R}, then Idr = uid™(m)

We prove that Idr = uid“(m)using three simple lemmas.

Lemmas
Lemmal. Vi : R.3e@i.kindE) = rcv (in(i), <vote, 1dr>)
By induction on distance of 1 to Idr.
Lemma2. Vi,j : R.Ve@i.kinde) = rcv (ini), <vote, j>).
(J = 1dr v dldr, p < dldr, 1))
By induction on causal order of rcv events.
Lemma 3. Vi I R.ve' @i. (kinde) = leader = i = Idr)

If kKind(e) = leader, then by property 5, 3v @ i.rcv (in(i), <vote, uid()>) -
Hence, by Lemma2 i = Idr v (d{ldr, i) < d(ldr, 1))
but the right disjunct is impossible.

Finally, from property 4, it is enough to know
Jekind(e) = rcv (in(ldr), <vote, uid(ldr)>)
which follows from Lemma 1.

QED

Leader Election Message Automaton
state me : N; initially uid(1)
state done : B; initially false
state x : B; initially false
action vote; precondition —done
effect done : = true
sends [msg (out(i), vote,me)]
action rcv,,; (vote)(v) : N;
sends if v > me then [msg (out(i), vote,v)] else[]
effect x : = if me = v then true else x
action leader; precondition x = true
only rcv,,; (vote) atfects x

only vote affects done

only {vote, rco,,;)(vote)} sends out (1), vote

Consensus is a Motivating Example

In modern distributed systems, e.g. the Google
file system, clouds, etc., reliability against faults
(crashes, attacks) is achieved by replication.

Consensus is used to coordinate write actions to
keep the replicas identical. It is a critical protocol
in modern systems used by IBM, Google,
Microsoft, Amazon, EMC, etc.

Requirements of Consensus Task

Use asynchronous message passing to decide
on a value.

1

—
\

Logical Properties of Consensus

P1: If all inputs are unanimous with value v, then any
decision must have value v.

All v:T. (If All e:E(Input). Input(e) = v then
All e:E(Decide). Decide(e) = v)

Input and Decide are event classes that effectively
partition the events and assign values to them. The
events are points in abstract space/time at which
“information flows.” More about this just below.

Logical Properties continued

P2: All decided values are input values.

All e:E(Decide). Exists e’:E(Input).
e’ < e & Decide(e) = Input(e’)

We can see that P2 will imply P1, so we take
P2 as part of the requirements.

Event Classes

If X is an event class, then E(X) are the events
in that class. Note E(X) effectively partitions all
events E into E(X) and E-E(X), its complement.

Every event in E(X) has a value of some type T
which is denoted X(e). In the case of E(Input)
the value is the typed input, and for E(Decide)
the value is the one decided.

Events

Formally the type E of events is defined
relative to the computation model which
includes a definition of processes.

The events are the points of space/time at
which information is exchanged. The
information at an event e is info(e).

Further Requirements for Consensus

The key safety property of consensus is that
all decisions agree.

P3: Any two decisions have the same value.
This is called agreement.

All el,e2: E(Decide). Decide(el) = Decide(e2).

Specific Approaches to Consensus

Many consensus protocols proceed in rounds,
voting on values, trying to reach agreement.
We have synthesized two families of
consensus protocols, the 2/3 Protocol and the
Paxos Protocol families.

We structure specifications around events
during the voting process, defining E(Vote)
whose values are pairs <n,v>, a ballot number,
n, and a value, v.

Properties of Voting

Suppose a group G of n processes, Pi, decide by
voting. If each Pi collects all n votes into a list L,
and applies some deterministic function f(L), such
as majority value or maximum value, etc., then
consensus is trivial in one step, and the value is
known at each process in the first round —
possibly at very different times.

The problem is much harder because of possible
failures.

Fault Tolerance

Replication is used to ensure system availability in
the presence of faults. Suppose that we assume
that up to f processes in a group G of n might fail,
then how do the processes reach consensus?

The TwoThirds method of consensus is to take n =
3f +1 and collect only 2f+1 votes on each round,
assuming that f processes might have failed.

Exampleforf=1,n=4

Here is a sample of voting in the case T ={0,1}.
0 0 1 1 Inputs

O 11 011 001_ 00 1 collected votes

1 1 0 0 next vote

001 001 011 o011
0 0 1 1
where f is majority voting, first vote is input

Specifying the 2/3 Method

We can specify the fault tolerant 2/3 method
by introducing further event classes.

E(Vote), E(Collect), E(Decide)

E(Vote): the initial vote is the <0,input value>,
subsequent votes are <n,f(L)>

E(Collect): collect 2f+1 values from G into list L
E(Decide): decide v if all collected values are v

The Hard Bits

The small example shows what can go wrong
with 2/3. It can waffle forever between 0 and

1, thus never decide.

Clearly if there is are decide events, the values
agree and that unique value is an input.

Can we say anything about eventually
deciding, e.g. liveness?

Liveness

If f processes eventually fail, then our design
will work because if f have all failed by round r,
then at round r+1, all alive processes will see
the same 2f+1 values in the list L, and thus
they will all vote for v’ = f(L), so in round r+2
the values will be unanimous which will
trigger a decide event.

Exampleforf=1,n=4
Here is a sample of voting in the case T ={0,1}.
0 0 1 1
001 001 001 011 collected votes
0 0 0 1 next vote

Inputs

000 00_1 001 _001
0 0 0 0

where f is majority voting, first vote is input,
round numbers omitted.

Safety Example

We can see in the f = 1 example that once a
process Pi receives 2/3 unanimous values, say
0, it is not possible for another process to over

turn the majority decision.

Indeed this is a general property of a 2/3
majority, the remaining 1/3 cannot overturn it

even if they band together on every vote.

Safety Continued

In the general case when voting is not by
majority but using f(L) and the type of values
is discrete, we know that if any process Pi sees
unanimous value vin L, then any other
process Pj seeing a unanimous value v’ will
see the same value, i.e. v = Vv’ because the two
lists, Li and Lj at round r must share a value,
that is they intersect.

Synthesizing the 2/3 Protocol from a
Proof of Design

We can formally prove the safety and liveness
conditions from the event logic specification
given earlier.

From this formal proof of design, pf, we can
automatically extract a protocol, first as an
abstract process, then by verified compilation,
a program in Java or Erlang.

The Synthesized 2/3 Protocol

Begin r:Nat, decided i, vote i: Bool,
r =0, decided i = false, vi = input to Pi; vote_i = vi

Until decided i do:

1. r:=r+l

2. Broadcast vote <r,vote_i> to group G
3. Collect 2f+1 round r votes in list L

4. vote_i:=majority(L)

5. If unanimous(L) then decided i := true
End

Abstract Process Model

M(P) == (Atom List) X (T + P)
E(P) == (Loc X M(P)) List
F(P) = M(P) = (P X E(P))

It is easy to show that M and E are continuous type
functions and that F is weakly continuous. Thus for

Process == corec(P. F (P))

Msg == M(Process) and Ext == E(Process)

we conclude Process is a subtype of F(Process),
Process & Msg =2 Process X Ext

Executing Systems of Processes

The environment chooses which messages
will be delivered. A run of a system is an
unbounded sequence of pairs <sys,choice>.

From a run of a system, we can build event
structures with locations and causal order.

Event Orderings over Runs

An event ordering of a run R is a collection of
events E, a function loc giving the location of
the event, a well founded causal order < on
events, and info, the information conveyed by
an event: <E, loc, <, info>

The events are pairs <x,n> at which location x
receives a message at step n of the run.

Event Structures over Runs

Event structures include the operations
X when e and x aftere
for state variable x an events e, and the axiom

not first(e) implies (x when e = x after pred(e))

Diversity

When we prove properties of a design, there are
many options at several steps, and we are able to
create multiple proofs at low additional cost. In
the process we create new designs.

For example, for the 2/3 protocol, Mark Bickford
found a variant that is faster by varying the
design proof, as mentioned in our paper — he
varies the collection method.

Diversity at the Level of Proof

Multiple formal proofs are “simultaneously”
generated. We illustrate this by viewing a
proof as a tree generated top down.

Illustrating Multiple Proofs

Illustrating Multiple Proofs

P2 P3 P4

Data Structure Diversity

Assuming there are four abstract protocols
derived from the proof trees. For each of
them it is possible to implement with different

data structures, e.g. list, array, tree, set, etc.

P2 P3 P4
Uy UUSE UUT UUED

Programming Language Diversity

We can translate abstract programs into

common programming languages such as
Java, Erlang, C++, or F#. So far we use only

Java and Erlang.

Combining all levels of diversity we are able to
generate over 200 variants of a protocol in the

best case.

Language Diversity

P2 P3 P4
Uy UUSE UUT UUED

]
Java ML Erlang F#

4 protocols, 14 options in 4 languages,
offers over 200 variants

Design and construction of attack-tolerant systems

Alternative proofs

Automatic] generation

Abstract
code

Formal compilation

Correct-by-construction system code S, semi-automatically evolves
along with system models M.

Correct by Construction Attack-Tolerant Systems

Robert Constable

Cornell University Mark Bickford

ATC-NY

J Architecture
Robbert Van Renesse ‘ | Technology
Cornell University Corporation

Processes in Type Theory

* Process in Type Theory

Process(M,E) = corec(P. M[P]—P XE[P])
* M represents messages (that can contain processes)
e E represents the external effect (messages sent, ...)
e corec(T.F[T]) = Nn:N. F"[Top]

e System = set of {Loc X Process}

 Environment delivers messages & creates
processes

Processes in Type Theory

* Process in Type Theory

Process(M,E) = corec(P. M[P]—P XE[P])
* M represents messages (that can contain processes)
e E represents the external effect (messages sent, ...)
e corec(T.F[T]) = Nn:N. F"[Top]

e System = set of {Loc X Process}

 Environment delivers messages & creates
processes

Processes in Type Theory

* Process in Type Theory

Process(M,E) = corec(P. M[P]—P XE[P])
* M represents messages (that can contain processes)
e E represents the external effect (messages sent, ...)
e corec(T.F[T]) = Nn:N. F"[Top]

e System = set of {Loc X Process}

 Environment delivers messages & creates
processes

Processes in Type Theory

* Process in Type Theory

Process(M,E) = corec(P. M[P]—P XE[P])
* M represents messages (that can contain processes)
e E represents the external effect (messages sent, ...)
e corec(T.F[T]) = Nn:N. F"[Top]

e System = set of {Loc X Process}

 Environment delivers messages & creates
processes

