
Towards a Formally Verified Proof Assistant

Abhishek Anand and Vincent Rahli

Cornell University

Abstract. This paper presents a formalization of Nuprl’s metatheory
in Coq. It includes a nominal-style definition of the Nuprl language, its
reduction rules, a coinductive computational equivalence, and a Curry-
style type system where a type is defined as a Partial Equivalence Rela-
tion (PER) à la Allen. This type system includes Martin-Löf dependent
types, a hierarchy of universes, inductive types and partial types. We
then prove that the typehood rules of Nuprl are valid w.r.t. this PER
semantics and hence reduce Nuprl’s consistency to Coq’s consistency.

1 Introduction

Trustworthiness of Proof Assistants. In order to trust a proof checked by a
proof assistant, we have to trust many aspects of both its theory and imple-
mentation. Typically, the core of a proof assistant consists of a proof checking
machinery which ensures that proof terms are indeed proofs of the correspond-
ing statements. In constructive type theories such as the ones implemented in
Agda [10], Coq [9], and Nuprl [4], this is accomplished with typechecking rules,
which are derived from a semantic model, e.g., a computational model based on
an applied λ-calculus. Parts of these theories have been formally described in
various documents [37,7,3,15,24,36].

This is not a completely satisfactory state of affairs because: (1) It is possible
to overlook inconsistencies between the different parts formalized on paper; and
(2) Mistakes are possible in these large proofs (often spanning hundreds of pages)
which are never carried out in full details. For example, we at least once added an
inconsistent rule to Nuprl even after extensive discussions regarding its validity.
A Bug that lead to a proof of False was found in Agda’s typechecker1. Recently,
the Propositional Extensionality axiom was found to be inconsistent with Coq2.
However, consistency of Propositional Extensionality is a straightforward conse-
quence of Werner’s proof-irrelevant semantics [37] of the Prop universe. Werner
allows only structurally recursive definitions while Coq’s termination analyzer
seems to be more permissive. A similar bug was discovered in Agda3.

Fortunately, proof assistants have matured enough [26,19] that we can con-
sider formalizing proof assistants in themselves [8], or in other proof assistants.
By Tarski’s undefinability theorem, these rich logics cannot formalize their own
1 https://lists.chalmers.se/pipermail/agda/2012/003700.html
2 See https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html for more de-
tails. We do not use this axiom in our development.

3 https://lists.chalmers.se/pipermail/agda/2014/006252.html

https://lists.chalmers.se/pipermail/agda/2012/003700.html
https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html
https://lists.chalmers.se/pipermail/agda/2014/006252.html

May 20, 2014

semantics. However, because Martin-Löf’s type theories are stratified into cu-
mulative universes, it is plausible that a universe can be modeled in a higher
universe of the same theory. Even better, universes of two equally powerful the-
ories can be interleaved so that universes up to a level i of one of the theories
could be modeled using at most universes up to level i + 1 of the other theory,
and vice-versa. The latter approach seems likely to catch more mistakes if the
two theories and their implementations are not too closely correlated.

Also, some type theories are proof-theoretically stronger than others. For ex-
ample, Agda supports inductive-recursive definitions and can likely prove Nuprl
and the predicative fragment of Coq consistent. Among other things, this paper
also illustrates how one can define Nuprl’s entire hierarchy of universes in Agda.
Advantages of a Mechanized Metatheory. A mechanized metatheory can guide
and accelerate innovation. Currently, developers of proof assistants are reluctant
to make minor improvements to their proof assistants. Many questions have to
be answered. Is the change going to make the theory inconsistent? Is it going
to break existing developments? If so, is there a way to automatically transform
developments of the old theory to the new one while preserving the semantics?
A mechanized metatheory can be used to confidently answer these questions.
Moreover, we would no longer have to sacrifice efficiency for simplicity.
Mechanized Formalization of Nuprl. Therefore, this paper tackles the task
of formalizing Nuprl in Coq. We chose Coq over other constructive proof as-
sistants [10] because of its powerful tactic mechanism, and over other non-
constructive proof assistants [32] because of the convenience of extracting pro-
grams from proofs for free. The two theories differ in several ways. While Coq
(like Agda) is based on an intensional type theory with intrinsic typing, Nuprl
is based on an extensional one with extrinsic typing. Also, over the years Nuprl
has been extended with several expressive types not found in Coq, e.g., quo-
tient types [4]; refinement types [4]; intersection and union types [24]; partial
types [15]; and recursive types [28]. Partial types enable principled reasoning
about partial functions (functions that may not converge on all inputs). This is
better than the approach of Agda4 and Idris [11] where one can disable termi-
nation checking and allow oneself to accidentally prove a contradiction.

Following Allen [3] we implement W types (which can be used to encode in-
ductive types [2] in an extensional type theory like Nuprl) instead of Mendler’s
recursive types, therefore making the entire Nuprl metatheory predicatively jus-
tifiable as evidenced by our illustrative Agda model in Sec. 5. Mendler’s recursive
types can construct the least fixpoint of an arbitrary monotone endofunction (not
necessarily strictly positive) in a Nuprl universe. Formalizing this notion seems
to require an impredicative metatheory. Our current system includes a hierarchy
of universes, function types, partial types, and we also extend Allen’s work to
include parametrized W types (similar to parametrized inductive types [33]).

Our formalization of Nuprl’s metatheory in Coq proceeds as follows in
three steps: (1) We define an inductive type of Nuprl terms. This definition
is parametrized by a collection of operators and makes it possible to add new
4 http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.AgdaVsCoq

2

http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.AgdaVsCoq

May 20, 2014

constructs without changing the core definitions. We then define substitution
and α-equality and prove several of their properties. (2) We define Nuprl’s lazy
computation system and a coinductive computational approximation relation
that was defined and proved to be a congruence by Howe [21]. We formalize
this proof as well as the domain theoretic properties that were used by Crary
to justify some typehood rules about partial types [15]. We then define a com-
putational equivalence relation [21] which plays a key role in the definition of
our type system. (3) Following Allen’s approach, we define types as PERs. This
definition determines which closed terms denote equal types and which closed
terms are equal members of types. Finally, we define Nuprl’s sequents and prove
the validity of many inference rules. We also show that using induction-recursion
in Agda results in a more intuitive and simple definition of Nuprl’s type system.

Nuprl

U0

U1

Coq w/o Prop

U0

U1

U2

Agda

U0

Coq w/ Prop

Prop

U0

 func_choice

We describe below the key details of each of
these steps. More details can be found in our tech-
nical report or in our publicly available code [5]. A
key aspect of this formalization is that it gives us
a verified trusted core of Nuprl. Although one can
use Nuprl’s tactics to prove typehood properties5,
these tactics can only use the above mentioned
rules in the end. Moreover, this work tackles the task of formally describing in a
unified framework all the extensions and changes that were made to Nuprl’s type
theory since CTT86 [14] and since Allen’s PER semantics [3]. The core of this
work is a formalization of [21,3,15,24]. Unlike previous works, we pin down three
precise metatheories that can model (parts of) Nuprl. This is best illustrated by
the figure above. An arrow from a Nuprl universe A to some universe B means
that the PERs of types in A can be defined as relations in the universe B. As
expected of large mechanized formalizations like ours, we found at least one mi-
nor mistake in one of these extensions. With the help of the original author, we
were able to fix this proof in our formalization.

2 Uniform Term Model and Computation System

We use a nominal approach (bound variables have names) to define Nuprl terms.
This definition closely matches the way terms are represented in Nuprl’s current
implementation. It is also very close to definitions used in paper descriptions of
Nuprl [21]. Many alternative approaches have been discussed in the literature.
See [6] for a survey. However, our choice avoided the overhead of translating the
paper definitions about Nuprl to some other style of variable bindings.

We often show colored code6: blue is used for inductive types, dark red for
constructors of inductive types, green for defined constants, functions and lem-
mas, red for keywords and some notations, and purple for variables.

Fig. 1 defines NTerm, the type of Nuprl terms. Variable bindings are made
explicit by the simultaneously defined BTerm type. bterm takes a list of variables

5 Nuprl has never had a typechecker. It relies on customizable tactics to do typechecking.
6 Some of the colored items are hyperlinked to the place they are defined, either in this
document, in the standard library, or in our publicly available code.

3

May 20, 2014

Inductive NVar : Set :=
| nvar : nat → NVar.

Inductive Opid : Set :=
| Can : CanonicalOp → Opid
| NCan : NonCanonicalOp → Opid.

Inductive NTerm : Set :=
| vterm: NVar → NTerm
| oterm: Opid → list BTerm → NTerm
with BTerm : Set :=
| bterm: (list NVar) → NTerm → BTerm.

Fig. 1 Uniform Term Model

lv and a term nt and constructs a bound term. Intuitively, a variable that is
free in nt gets bound to its first occurrence in lv , if any. The rest of our term
definition is parametrized by a collection of operators Opid. We divide our Opids
into two groups, CanonicalOps and NonCanonicalOps (see [5, Sec. 2.1] for their
definitions). This distinction is only relevant for defining the computation system
and its properties. Intuitively, an operator constructs a term from a list BTerm.
For example, oterm (Can NLambda) [bterm [nvar 0] (vterm (nvar 0))] represents a
λ-term of the form λx.x. Nuprl has a lazy computation system and any NTerm
of the form (oterm (Can)) is already in canonical form and is called a value.

Not all the members of NTerm are well-formed: (nt wf t) asserts that t is
well-formed. For example, a well-formed λ-term must have exactly one bound
term as an argument. Moreover, that bound term must have exactly one bound
variable. Fig. 2 compactly describes the syntax of an illustrative subset of the
language that we formalized. There, v ranges over values. There is a member
of CanonicalOp for each clause of v . For example, the constructor Nint of type
Z→ CanonicalOp corresponds to the first clause that denotes integers. In Fig. 2,
vt ranges over the values that represent types. A term t is either a variable, a
value, or a non-canonical term represented as (oterm (NCan)) in our term
model. These have arguments (marked in boxes) that are said to be principal. As
mentioned below, principal arguments are subterms that have to be evaluated
to a canonical form before checking whether the term itself is a redex or not.

We next define our simultaneous substitution function (lsubst) and α-equality
(alpha eq and alpha eq bterm). As expected of a nominal approach to variable
bindings, we spent several weeks proving their properties that were required
to formalize Nuprl. One advantage is that these and many other definitions
and proofs [5, Sec. 2.2] apply to any instantiation of Opid in which equality is
decidable. This considerably simplifies the process of extending the language.

We formalize Nuprl’s computation system by defining a one step computa-
tion function [5, Sec. 3.1] on NTerm. When evaluating a non-canonical term, it
first checks whether one of the principal arguments is non-canonical. If so, it re-
cursively evaluates it. The interesting cases are when all the principal arguments
are canonical. Fig. 2 compactly describes these cases for an illustrative subset of
the formalized system.

3 Computational Approximation and Equivalence
When we define the type system in Sec. 6, we want it to respect many compu-
tational relations. For example, most type systems satisfy the subject reduction
property. In Agda, Coq and Nuprl, if t reduces to t’ , and t is in some type

4

http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#nat
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#CanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#Opid
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#NonCanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#Opid
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#CanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#NonCanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#NLambda
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms.html#nt_wf
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#CanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#Nint
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Numbers.BinNums.html#Z
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#CanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/substitution.html#lsubst
http://www.nuprl.org/html/Nuprl2Coq/v1/html/alphaeq.html#alpha_eq
http://www.nuprl.org/html/Nuprl2Coq/v1/html/alphaeq.html#alpha_eq_bterm

May 20, 2014

v ::= vt (type) | inl(t) (left injection) | Ax (axiom)
| i (integer) | inr(t) (right injection) | 〈t1, t2〉 (pair)
| λx .t (lambda) | sup(t1, t2) (supremum)

vt ::= Z (integer type) | x:t1 → t2 (function type)
| x : t1 × t2 (product type) | t2 = t ∈ t1 (equality type)
| Base (base type) | t (partial type)
| ∪x : t1.t2 (union type) | ∩x:t1.t2 (intersection type)
| t1//t2 (quotient type) | t1 + t2 (disjoint union type)
| {x : t1 | t2} (set type) | W(x:t1, t2) (W type)

t ::= x (variable) | v (value)
| t1 t2 (application) | fix(t) (fixpoint)
| let x := t1 in t2 (call-by-value) | let x , y = t1 in t2 (spread)
| case t1 of inl(x)⇒ t2 | inr(y)⇒ t3 (decide)
| if t1 =Z t2 then t3 else t4 (integer equality)

(λx .F) a → F [x\a]
let x , y = 〈t1, t2〉 in F → F [x\t1; y\t2]

fix(v) → v fix(v)
let x := v in t → t [x\v]

case inl(t) of inl(x)⇒ F | inr(y)⇒ G → F [x\t]
case inr(t) of inl(x)⇒ F | inr(y)⇒ G → G[y\t]
if i1 =Z i2 then t1 else t2 → t1, if i1 = i2
if i1 =Z i2 then t1 else t2 → t2, if i1 6= i2

Fig. 2 Syntax (top) and operational semantics (bottom) of Nuprl

Definition olift (R : NTerm → NTerm → [univ]) (x y :NTerm) : [univ] :=
nt wf x × nt wf y ×
∀ sub: Substitution, wf sub sub → programs [lsubst x sub, lsubst y sub]

→ R (lsubst x sub) (lsubst y sub).

Definition blift (R: NTerm → NTerm → [univ]) (bt1 bt2 : BTerm): [univ] :=
{lv: (list NVar) × {nt1,nt2 : NTerm × R nt1 nt2
× alpha eq bterm bt1 (bterm lv nt1) × alpha eq bterm bt2 (bterm lv nt2) }}.

Definition lblift (R: NTerm → NTerm → [univ]) (l r : list BTerm): [univ] :=
length l = length r × ∀ n : nat, n < length l → blift R (l [n]) (r [n]).

Fig. 3 Lifting operations. The notation { : × } denotes sigma types (sigT)

T , then t and t’ are equal in T . In addition, it is useful to have our types re-
spect a congruence that contains the computation relation. For example, Coq
has a notion of definitional equality which is a congruence. In Nuprl, we have
a computation equivalence ∼ [21], which is a coinductively defined congruence
that permits more powerful equational reasoning. For example, all diverging pro-
grams are equivalent under ∼. The same holds for all programs that generate an
infinite stream of zeroes. Howe first defines a preorder approx on closed terms,
proves that it is a congruence and finally defines t1 ∼ t2 as approx t1 t2 ×
approx t2 t1 . We first define olift, blift, lblift in Fig. 3. These will be used to
lift a binary relation on closed NTerms to one on terms that are not necessarily
closed, to BTerms, and to lists of BTerms, respectively. Note that programs l
asserts that every member of l is both well-formed and closed; wf sub sub as-

5

http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms.html#nt_wf
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms.html#nt_wf
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://www.nuprl.org/html/Nuprl2Coq/v1/html/alphaeq.html#alpha_eq_bterm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/alphaeq.html#alpha_eq_bterm
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#length
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#length
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Peano.html#:nat scope:x '<' x
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#length
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#selectbt
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#selectbt
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#selectbt
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#selectbt
http://coq.inria.fr/V8.1/stdlib/Coq.Init.Specif.html#sigT
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv

May 20, 2014

CoInductive approx : (tl tr :NTerm) : [univ] :=
| approx fold: close compute approx tl tr → approx tl tr .

CoInductive approx aux (R : NTerm → NTerm → [univ]) (tl tr : NTerm): [univ] :=
| approx fold: close compute (approx aux R \2/ R) tl tr → approx aux R tl tr .

Definition approx := approx aux (fun : NTerm ⇒ False).
Fig. 4 Computational approximation.

serts that the range of the substitution sub consists of well-formed terms; t ⇓ tv
asserts that t converges to the value tv [5, Sec. 3.1]. t ⇓ asserts that t converges
to some value. Although the notation [univ] currently stands for Type, most of
our development works unchanged if we change it to Prop.

One can think of approx as the greatest fixpoint of the following operator on
binary relations:
Definition close compute (R: NTerm→ NTerm→ [univ]) (tl tr : NTerm): [univ]:=
programs [tl , tr] × ∀ (c : CanonicalOp) (tls : list BTerm),
(tl ⇓ oterm (Can c) tls)
→ {trs : list BTerm × (tr ⇓ oterm (Can c) trs)× lblift (olift R) tls trs }.

One could now directly define approx as at the top of Fig. 4, where \2/ denotes
disjunction of binary relations. However, this approach would require using the
cofix tactic of Coq for proving the properties of approx. Unfortunately, cofix
does very conservative productivity checking [23] and often rejects our legitimate
proofs. So we use parametrized coinduction [23] to define it in a slightly indirect
way (the next two items in Fig. 4). With this technique, we only need to use
cofix once to prove a “coinduction-principle” [5, Sec. 3.2] for approx and use
that principle for the coinductive proofs about approx. Howe then proves that
(olift approx) (abbreviated as approx open) is a congruence [21]:
Theorem approx open congruence : ∀ (o : Opid) (lbt1 lbt2 : list BTerm),
lblift approx open lbt1 lbt2
→ nt wf (oterm o lbt2) → approx open (oterm o lbt1) (oterm o lbt2).

The proof is not easy. He first defines another relation approx star, which
contains approx open and which is a congruence by definition. Then he proves
that approx star implies approx open. This proof assumes that all Opids sat-
isfy a condition called extensionality. We formalize his proof and prove that all
the Opids of the current Nuprl system are extensional. Hence, we obtain that
approx open, approx and ∼ are congruences [5, Sec. 3.2.1].
Domain Theoretic Properties. The preorder approx has interesting domain the-
oretic properties [15] such as compactness and the least upper bound principle.
Let ⊥ be fix(λx .x). It is the least element (up to ∼) w.r.t. approx, i.e., for
any closed term t , approx ⊥ t . The least upper bound principle says that for
any terms G and f , G(fix(f)) is the least upper bound of the (approx) chain
G(f n(⊥)) for n ∈ N. Compactness says that if G(fix(f)) converges, then there
exists a natural number n such that G(f n(⊥)) converges. We formalized proofs
of both these properties [5, Sec. 3.3]. Crary used compactness to justify his fix-
point induction principle. It provides an important way for proving that a term
of the form fix(f) is in a partial type [5, Sec. 5.2]. We have used the least upper

6

http://coq.inria.fr/stdlib/Coq.Init.Logic.html#False
http://www.nuprl.org/html/Nuprl2Coq/v1/html/computation3.html#computes_to_value
http://www.nuprl.org/html/Nuprl2Coq/v1/html/computation3.html#hasvalue
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#CanonicalOp
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms.html#nt_wf
http://www.nuprl.org/html/Nuprl2Coq/v1/html/approx_star.html#approx_star
http://www.nuprl.org/html/Nuprl2Coq/v1/html/approx_star.html#approx_star
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv

May 20, 2014

T type iff T≡T
t∈T iff t≡t∈T

T1≡T2 if T1 ⇓ T ′
1 ∧ T2 ⇓ T ′

2 ∧ T ′
1≡T

′
2

t1≡t2∈T if t1 ⇓ t′1 ∧ t2 ⇓ t′2 ∧ T ⇓ T ′ ∧ t′1≡t′2∈T ′

t1≡t2∈Base iff t1 ∼ t2
Ax≡Ax∈(a = b ∈ A) iff (a = b ∈ A) type ∧ a≡b∈A
t1≡t2∈A iff (A) type ∧ (t1⇓ ⇐⇒ t2⇓) ∧ (t1⇓ ⇒ t1≡t2∈A)
f1≡f2∈x:A→ B iff (x:A→ B) type

∧ ∀a1, a2. a1≡a2∈A⇒ f1(a1)≡f2(a2)∈B[x\a1]
sup(a1, f1)≡sup(a2, f2)∈W(x:A,B)

iff (W(x:A,B)) type ∧ a1≡a2∈A
∧ ∀b1, b2. b1≡b2∈B[x\a1] ⇒ f1(b1)≡f2(b2)∈W(A:x,B)

Base≡Base

(a1 = a2 ∈ A)≡(b1 = b2 ∈ B) iff A≡B
∧ (a1≡b1∈A ∨ a1 ∼ b1) ∧ (a2≡b2∈A ∨ a2 ∼ b2)

A≡B iff A≡B ∧ (∀a. a∈A⇒ a⇓)
x1:A1 → B1≡x2:A2 → B2 iff A1≡A2

∧ ∀a1, a2. a1≡a2∈A1 ⇒ B1[x1\a1]≡B2[x2\a2]
W(x1:A1, B1)≡W(x2:A2, B2) iff A1≡A2

∧ ∀a1, a2. a1≡a2∈A1 ⇒ B1[x1\a1]≡B2[x2\a2]
Fig. 5 Informal definition of a core part of a Nuprl universe

bound principle to justify some untyped computational equivalences that are
useful for automatic optimization of Nuprl extracts [34].

4 PER Semantics

We now define Nuprl’s type system. Several semantics have been proposed for
Nuprl over the years, such as: Allen’s PER semantics [3,15]; Mendler’s adapta-
tion of Allen’s PER semantics [28]; and Howe’s set-theoretic semantics [22]. In
this paper, we use Allen’s PER semantics because it can be defined predicatively.
Also, the various additions made to Nuprl over the years have been validated
using this semantics. Allen’s method determines which closed terms are types
and which closed terms are equal members of types, therefore, defining types as
PERs. A PER is symmetric and transitive, but not necessarily reflexive. Partial-
ity is required because the domain of these relations is the entire collection of
closed terms, and not just the members of the type. We say that t is a member
of type T when the PER definition of T relates t and t.

Fig. 5 informally presents a core part of Nuprl’s type system à la Crary, which
can be made formal using induction-recursion (where equality in W types has
to be defined inductively). We write T1≡T2 to mean that T1 and T2 are equal
types, and a≡b∈T to mean that a and b are equal in type T . Allen designed his
semantics to work with systems that have an extensional type equality (meaning
that two types T and S are equal if for all t and s, t≡s∈T iff t≡s∈S) and suggests
a way to deal with type systems that have a more intensional type equality, such
as Nuprl. For example, two true equality types such as 0 = 0 ∈ N and 1 = 1 ∈ N
are not equal types in Nuprl even though they have the same PER. Also, note
that type equality in Nuprl is coarser than computational equivalence (∼). For
example (λx.((x + 1) − 1) = λx.x ∈ N → N) and (λx.x = λx.x ∈ N → N)

7

http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv

May 20, 2014

are equal equality types, but the two terms are not computationally equivalent
because λx.((x+1)− 1) gets stuck when applied to a term that is not a number
while λx.x does not. Crary [15] provides a formal account of the adaptation
of Allen’s semantics to deal with systems that have non-fully extensional type
equality (he adds a few type constructors and leaves off the W types). Following
Crary, our type system defines which terms denote equal types instead of simply
defining which terms denote types as in Allen’s semantics.

As mentioned by Allen, simple induction mechanisms such as the one of
Coq are not enough to provide a straightforward definition of Nuprl’s seman-
tics, where one would define typehood and member equality by mutual induc-
tion [3, Sec. 4.2]. The problem is that in the inductive clause that defines the
dependent function types, the equality predicate occurs at a non-strictly-positive
position. Allen suggests that the definition should however be valid because it
is “half-positive”. This is what induction-recursion, as implemented in Agda,
achieves [17,18]. Instead of making that induction-recursion formal, the approach
taken by Allen was to define ternary relations between types and equalities.

This trick of translating a mutually inductive-recursive definition to a single
inductive definition has been formally studied by Capretta [13]. He observes that
this translation is problematic when the return type of the function mentions a
predicative universe. Indeed, we experienced the same problem while formalizing
Allen’s definition in a precise metatheory like Coq. In particular, we can only
predicatively formalize a finite number of universes of Nuprl in Coq. This is not
surprising given the results of Setzer that intensional and extensional versions
of various dependent type theories have the same proof theoretic strength [35].

We will first explain how induction-recursion can be used to define the type
system in an intuitive way. Although the inductive-recursive definition is easier
to understand and lets us predicatively prove Nuprl’s consistency, Agda lacks
a tactic language, which is critical to automate many otherwise tedious proofs.
Therefore, we chose Coq over Agda and used Allen’s trick to define Nuprl’s type
system. At first, this purely inductive definition in Sec. 6 might seem overly com-
plicated. However, it can be understood as applying Capretta’s general recipe [13]
to the inductive-recursive definition.

5 An Inductive-Recursive Approach

Crary first presents an intuitive definition of Nuprl’s type system in the style
of Fig. 5 and asserts that it is not a valid inductive definition. Then he uses
Allen’s trick to convert it to a purely inductive definition [15, page 51]. Using
induction-recursion [18], this section shows that the definitions in Fig. 5 are
meaningful. Moreover, we show how to define the entire predicative hierarchy
of universes of Nuprl in the first universe of Agda’s predicative hierarchy. This
is not surprising, given that induction-recursion is known to increase the proof
theoretic strength of type theories [18]. As mentioned above, because Agda does
not have a tactic machinery necessary for our proof automation, this definition
is only for illustrative purposes. We define universes having only integers and
dependent function types ([5, Sec. 4.1] has more types, e.g., W types).

8

May 20, 2014

mutual
data equalType (n : N) (iUnivs : Vec PER n)

(T1 T2 : NTerm) : Set where

PINT : { _ : T1 ⇓ mk_Int}
{ _ : T2 ⇓ mk_Int}
→ (equalType n iUnivs T1 T2)

PFUN : {A1 B1 A2 B2 : NTerm} {v1 v2 : NVar}
{ _ : T1 ⇓ (mk_Fun A1 v1 B1)}
{ _ : T2 ⇓ (mk_Fun A2 v2 B2)}
(pA : equalType n iUnivs A1 A2)
(pB : (a1 a2 : NTerm)

(pa : equalInType iUnivs pA a1 a2)
→ equalType n iUnivs

(subst B1 v1 a1)
(subst B2 v2 a2))

→ (equalType n iUnivs T1 T2)
PUNIV : (m : Fin n)

{ _ : T1 ⇓ (mk_Univ (toN m))}
{ _ : T2 ⇓ (mk_Univ (toN m))}
→ (equalType n iUnivs T1 T2)

equalInType : {T1 T2 : NTerm} {n : N}
(iUnivs : Vec PER n)
(teq : equalType n iUnivs T1 T2)
→ PER

equalInType iUnivs PINT t t’ =∑
Z (ń n

→ (t ⇓ (mk_int n))
× t’ ⇓ (mk_int n))

equalInType iUnivs (PFUN pA pB) t t’ =
(a1 a2 : NTerm)
(pa : equalInType iUnivs pA a1 a2)
→ equalInType iUnivs

(pB a1 a2 pa)
(mk_apply t a1)
(mk_apply t’ a2)

equalInType iUnivs (PUNIV m) T1 T2 =
lookup m iUnivs T1 T2

Fig. 6 Agda Inductive-Recursive definition

In Fig. 6, where , where PER is NTerm→NTerm→Set, equalType inductively
defines which types are equal and equalInType recursively defines which terms
are equal in a type7. These definitions refer to each other and are simultaneously
defined using the mutual keyword. Both definitions are parametrized by a number
n and iUnivs, a vector of PERs of size n. The idea is that we have already defined
the first n universes by now and the PER defined by (equalType n iUnivs) will
serve as the equality of types in the next universe. The mth member (where
m < n) of iUnivs is the already constructed PER that determines which two
terms denote equal types in the mth universe. Given an evidence that T1 and
T2 are equal types in this universe, equalInType returns the PER of this type.
Note that equalInType is structurally recursive on its argument teq. Note also
that equalInType occurs at a negative position in the PFUN clause, but this is
allowed since equalInType is defined by structural recursion and not induction.

6 An Inductive Approach Based on Allen’s Semantics

6.1 Metatheory. Now, we return to Coq, where induction-recursion is not
yet implemented. As mentioned above, all the Coq definitions presented so far
would typecheck either in Prop or Type. This is not true about the definition of
the type system. As mentioned above, we define two metatheories of Nuprl in
Coq. One uses its predicative Type hierarchy. This metatheory uses n + 1 Coq
universes to model n Nuprl universes. Because universe polymorphism is still
under development in Coq, this currently requires that we duplicate the code at
each level, which is impractical. Hence, we have only verified this translation for
n = 3, and we will not discuss that metatheory further [5, Sec. 4.3].

7 For brevity, we ignore the issue of closedness of terms here.

9

May 20, 2014

The other metatheory uses Coq’s Prop impredicative universe with the Func-
tionalChoice on axiom8 ([5, Sec. 4.2.3] explains why this axiom is needed). In this
metatheory, we can model all of Nuprl’s universes. Also, it allows us to justify
some principles that a classical mathematician might wish to have. For example,
in the Propmodel, using the law of excluded middle for members of Prop (known
to be consistent with Coq8), following Crary [15] we have proved [5, Sec. 5.2]
that the following weak version of the law of excluded middle is consistent with
Nuprl: ∀P : Ui. ↓(P + (P → Void)). Because the computational content of the
disjoint union is erased (using the squashing operator ↓), one cannot use this to
construct a magical decider of all propositions.

6.2 Type Definitions. This section illustrates our method by defining base,
equality, partial, function, and W types. As mentioned above, types are defined
as PERs on closed terms. A CTerm is a pair of an NTerm and a proof that it
is closed. Let per stand for CTerm → CTerm → Prop. A type system is defined
below as a candidate type system that satisfies some properties such as symmetry
and transitivity of the PERs, where a candidate type system is an element of
the type cts, which we define as CTerm → CTerm → per→ Prop. Given a cts
c, c T1 T2 eq asserts that T1 and T2 are equal types in the type system c and
eq is the PER that determines which terms are equal in these types.

We now define the PER constructors (of the form per TyCon) for each type
constructor TyCon of Nuprl’s type theory. Intuitively, each per TyCon is a mono-
tonic operator that takes a candidate type system ts and returns a new candidate
type system where all the types compute to terms of the form (TyCon T1 . . .Tn)
where T1 , . . . , Tn are types of ts.

In the definitions below we use { : , } for propositional existential types
(i.e., ex from the standard library). Also, we use Nuprl term constructors of the
form mkc TyCon. We omit their definitions as they should be obvious. Finally,
for readability we sometimes mix Coq and informal mathematical notations.

Base. The values of type Base (suggested by Howe [21]) are closed terms and its
equality is computational equivalence. In the following definition, ts is not used
because Base does not have any arguments:

Definition per base (ts : cts) T1 T2 (eq : per) : Prop :=
T1 ⇓ Base × T2 ⇓ Base × ∀ t t’ , eq t t’ ⇔ t ∼ t’ .

Equality. Unlike Coq, Nuprl has primitive equality types which reflect the
metatheoretical PERs as propositions that users can reason about. Note that
Uniqueness of Identity Proofs, aka UIP, holds for Nuprl, i.e., Ax is the unique
canonical inhabitant of equality types.

Definition per eq (ts : cts) T1 T2 (eq : per) : Prop :=
{A, B, a1, a2, b1, b2 : CTerm , {eqa : per

, T1 ⇓ (mkc equality a1 a2 A) × T2 ⇓ (mkc equality b1 b2 B)
× ts A B eqa × (eqa \2/ ∼) a1 b1 × (eqa \2/ ∼) a2 b2
× (∀ t t’ , eq t t’ ⇔ (t ⇓ Ax × t’ ⇓ Ax × eqa a1 a2)) }}.

8 http://coq.inria.fr/cocorico/CoqAndAxioms

10

http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Logic.ChoiceFacts.html#FunctionalChoice_on
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Logic.ChoiceFacts.html#FunctionalChoice_on
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic.html#ex
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_base
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_base
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_axiom
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_equality
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_equality
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_axiom
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_axiom
http://coq.inria.fr/cocorico/CoqAndAxioms

May 20, 2014

This definition differs from the one present in earlier Nuprl versions, where
(eqa \2/ ∼) was simply eqa. This means that t ∈ T is now a type when T is
a type and t is in Base. In earlier versions of Nuprl [15] (as well as in other
type theories [36]) membership was a non-negatable proposition, i.e., t ∈ T was
not a proposition unless it was true. This change allows us to reason in the
theory about a wider range of properties that could previously only be stated
in the metatheory. For example, we can now define the subtype type A v B as
λx.x ∈ A → B because λx.x is in Base. Sec. 6.3 shows how we had to change
the definition of a type system in order to cope with this modification.

Partial Type. Given a type T that has only converging terms, we form the partial
type T (see Fig. 5). Equal members of T have the same convergence behaviour,
and if either one converges, they are equal in T .

Definition per partial (ts : cts) T1 T2 (eq : per) : Prop :=
{A1, A2 : CTerm , {eqa : per

, T1 ⇓ (mkc partial A1) × T2 ⇓ (mkc partial A2)
× ts A1 A2 eqa × (∀ a, eqa a a → a⇓)
× (∀ t t’ , eq t t’ ⇔ ((t⇓ ⇔ t’⇓) × (t⇓ → eqa t t’))) }}.

Type Family. Allen [3] introduces the concept of type families to define dependent
types such as function types and W types. A type family TyCon is defined as
a family of types B parametrized by a domain A. In the following definition
per-fam(eqa) stands for (∀ (a a’ : CTerm) (p : eqa a a’), per), which is the
type of PERs of type families over a domain with PER eqa; and CVTerm l is
the type of terms with free variables contained in l .

Definition type family TyCon (ts : cts) T1 T2 eqa (eqb : per-fam(eqa)) : Prop:=
{A, A’ : CTerm , {v, v’ : NVar , {B : CVTerm [v] , {B’ : CVTerm [v’] ,

T1 ⇓ (TyCon A v B) × T2 ⇓ (TyCon A’ v’ B’)
× ts A A’ eqa
× (∀ a a’ , ∀ e : eqa a a’ , ts (B [v\a]) (B’ [v’\a’]) (eqb a a’ e))}}}}.

Equalities of type families in our formalization (such as eqb above) are five
place relations, while they are simply three place relations in Allen’s and Crary’s
formalizations. This is due to the fact that conceptually ∀ (a’ : CTerm) and
∀ (p : eqa a a’) could be turned into intersection types because eqb only depends
on the fact that the types are inhabited and does not make use of the inhabitants.

Dependent Function. Dependent function types are defined so that functional
extensionality is a trivial consequence.

Definition per func (ts : cts) T1 T2 (eq : per) : Prop :=
{eqa : per, {eqb : per-fam(eqa)

, type family mkc function ts T1 T2 eqa eqb
× (∀ t t’ , eq t t’ ⇔

(∀ a a’ (e : eqa a a’), eqb a a’ e (mkc apply t a) (mkc apply t’ a’)))}}.

11

http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_partial
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_partial
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CVTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CVTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CVTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_function
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_apply
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_apply

May 20, 2014

W. We define W types, by first inductively defining their PERs called weq [3]:
Inductive weq (eqa : per) (eqb : per-fam(eqa)) (t t’ : CTerm) : Prop :=
| weq cons :
∀ (a f a’ f ’ : CTerm) (e : eqa a a’),
t ⇓ (mkc sup a f)
→ t’ ⇓ (mkc sup a’ f ’)
→ (∀ b b’ , eqb a a’ e b b’ → weq eqa eqb (mkc apply f b) (mkc apply f ’ b’))
→ weq eqa eqb t t’ .

Definition per w (ts : cts) T1 T2 (eq : per) : Prop :=
{eqa : per, {eqb : per-fam(eqa) ,
type family mkc w ts T1 T2 eqa eqb × (∀ t t’ , eq t t’ ⇔ weq eqa eqb t t’)}}.

Our technical report [5, Sec. 4.2] extends W types to parametrized W types and
uses them to define parametrized inductive types (e.g., vectors).

6.3 Universes and Nuprl’s Type System. Universes. As Allen [3] and
Crary [15] did, we now define Nuprl’s universes of types, and finally Nuprl’s type
system. First, we inductively define a close operator on candidate type systems.
Given a candidate type system cts, this operator builds another candidate type
system from ts that is closed w.r.t. the type constructors defined above:
Inductive close (ts : cts) (T T’ : CTerm) (eq : per) : Prop :=
| CL init : ts T T’ eq → close ts T T’ eq
| CL base : per base (close ts) T T’ eq → close ts T T’ eq
| CL eq : per eq (close ts) T T’ eq → close ts T T’ eq
| CL partial : per partial (close ts) T T’ eq → close ts T T’ eq
| CL func : per func (close ts) T T’ eq → close ts T T’ eq
| CL w : per w (close ts) T T’ eq → close ts T T’ eq .

We define U(i), the Nuprl universe type at level i, by recursion on i ∈ N:
Fixpoint univi (i : nat) (T T’ : CTerm) (eq : per) : Prop :=
match i with
| 0 ⇒ False
| S n ⇒ (T ⇓ (U(n)) × T’ ⇓ (U(n))

× ∀ A A’ , eq A A’ ⇔ {eqa : per, close (univi n) A A’ eqa})
{+} univi n T T’ eq end.

Finally, we define univ, the collection of all universes, and the Nuprl type
system as follows:
Definition univ (T T’ : CTerm) (eq : per) := {i : nat , univi i T T’ eq}.
Definition nuprl := close univ.

We can now define t1≡t2∈T as {eq : per , nuprl T T eq × eq t1 t2} and
T≡T ′ as {eq : per , nuprl T T ′ eq}.
Type System. Let us now prove that nuprl is a type system, i.e., that it is a
candidate type system ts that satisfies the following properties [3,15]:

1. uniquely valued : ∀ T T’ eq eq’ , ts T T’ eq → ts T T’ eq’ → eq ⇐2⇒ eq’ .
2. equality respecting : ∀ T T’ eq eq’ , ts T T’ eq → eq ⇐2⇒ eq’ → ts T T’ eq’ .
3. type symmetric: ∀ eq , symmetric (fun T T’ ⇒ ts T T’ eq).
4. type transitive: ∀ eq , transitive (fun T T’ ⇒ ts T T’ eq).
5. type value respecting : ∀ T T’ eq , ts T T eq → T ∼ T’ → ts T T’ eq .

12

http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_sup
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_sup
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_apply
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_apply
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_w
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#nat
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#S
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Relations.Relation_Definitions.html#symmetric
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Relations.Relation_Definitions.html#transitive
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv

May 20, 2014

6. term symmetric: ∀ T eq , ts T T eq → symmetric eq .
7. term transitive: ∀ T eq , ts T T eq → transitive eq .
8. term value respecting : ∀ T eq , ts T T eq → ∀ t t’ , eq t t → t ∼ t’ → eq t t’ .

A type system uniquely defines the PERs of its types. The last six properties
state that ≡ ∈ and ≡ are PERs that respect computational equivalence.
This definition differs from Crary’s [15] as follows: (1) We added condition 2 be-
cause Allen and Crary consider equivalent PERs to be equal and we decided not
to add the propositional and function extensionality axioms; (2) We strength-
ened conditions 5 and 8 by replacing ⇓ with ∼. This seemed necessary to obtain
a strong enough induction hypothesis when proving that our new definition of
per eq preserves the type system properties [5, Sec. 4.2]. These properties and
the congruence of ∼ allow us to do computation in any context in sequents.

Finally, the following lemma corresponds to Crary’s Lemma 4.13 [15]: For
all i ∈ N, univi i is a type system; and the following theorem corresponds to
Crary’s Lemma 4.14 [15]: univ and nuprl are type systems.

6.4 Sequents and Rules. In Nuprl, one reasons about the nuprl type system
types using a sequent calculus, which is a collection of rules that captures many
properties of the nuprl type system and its types. For example, for each type
we have introduction and elimination rules. This calculus can be extended as
required by adding more types and/or rules. This section presents the syntax
and semantics of Nuprl’s sequents and rules. We then prove that these rules are
valid w.r.t. the above semantics, and therefore that Nuprl is consistent. This
paper provides a safe way to add new rules by allowing one to formally prove
their validity, which is a difficult task without the help of a proof assistant9.
Syntax of Sequents and Rules. Sequents are of the form h1, . . . , hn ` T bext tc,
where t is the extract/evidence of T , and where an hypothesis h is either of the
form x : A (non-hidden) or of the form [x : A] (hidden). Such a sequent states
that T is a type and t is a member of T . A rule is a pair of a sequent and a list of
sequents, which we write as (S1 ∧ · · · ∧ Sn) ⇒ S. To understand the necessity
of hidden hypotheses, let us consider the following intersection introduction rule:

H , [x : A] ` B[x] bext ec ∧ H ` A = A ∈ Ui ⇒ H ` ∩a:A.B[a] bext ec
This rule says that to prove that ∩a:A.B[a] is true with extract e, one has to
prove that B[x] is true with extract e, assuming that x is of type A. The meaning
of intersection types requires that the extract e be the same for all values of A,
and is therefore called the uniform evidence of ∩a:A.B[a]. The fact that x is
hidden means that it cannot occur free in e (but can occur free in B). The same
mechanism is required to state the rules for, e.g., subset types or quotient types.
Semantics of Sequents and Rules. Several definitions for the truth of sequents
occur in the Nuprl literature [14,15,24]. Among these, Kopylov [24]’s definition
was the simplest. We provide here an even simpler definition and we have proved
in Coq that all these definitions are equivalent [5, Sec. 5.1]. The semantics we

9 Howe [22] writes: “Because of this complexity, many of the Nuprl rules have not been com-
pletely verified, and there is a strong barrier to extending and modifying the theory.”

13

http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Relations.Relation_Definitions.html#symmetric
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Relations.Relation_Definitions.html#transitive
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv

May 20, 2014

present uses a notion of pointwise functionality [15, Sec. 4.2.1], which says that
each type in a true sequent must respect the equalities of the types on which it
depends. This is captured by formula 1 below for the hypotheses of a sequent,
and by formula 2 for its conclusion. For the purpose of this discussion, let us
ignore the possibility that some hypotheses can be hidden.

Let H be a list of hypotheses of the form x1 : T1, . . . , xn : Tn, let s1 be a
substitution of the form (x1 7→ t1, . . . , xn 7→ tn), and let s2 be a substitution of
the form (x1 7→ u1, . . . , xn 7→ un).
Similarity. Similarity lifts the notion of equality in a type (i.e., ≡ ∈) to lists
of hypotheses. We say that s1 and s2 are similar in H, and write s1≡s2∈H, if
for all i ∈ {1, . . . , n}, ti≡ui∈Ti[x1\t1; · · · ;xi−1\ti−1]. Let s∈H be s≡s∈H.
Equal Hypotheses. The following notion of equality lifts the notion of equality
between types (i.e., ≡) to lists of hypotheses. We say that the hypotheses H
are equal w.r.t. s1 and s2, and write s1(H)≡s2(H), if for all i ∈ {1, . . . , n},
Ti[x1\t1; · · · ;xi−1\ti−1]≡Ti[x1\u1; · · · ;xi−1\ui−1].
Hypotheses Functionality. We say that the hypotheses H are pointwise func-
tional w.r.t. the substitution s, and write H@s if

∀s′. s≡s′∈H ⇒ s(H)≡s′(H) (1)

Truth of Sequents. We say that a sequent of the form H ` T bext tc is true if

∀s1, s2. s1≡s2∈H ∧H@s1 ⇒ T [s1]≡T [s2] ∧ t[s1]≡t[s2]∈T [s1] (2)

In addition the free variables of t have to be non-hidden in H.
Validity of Rules. A rule of the form (S1 ∧ · · · ∧ Sn) ⇒ S is valid if assuming
that the sequents S1, . . . , Sn are true then the sequent S is also true.
Consistency. Using the framework described in this paper we have currently
verified over 70 rules, including the usual introduction and elimination rules to
reason about the core type system presented above in Sec. 6.2 [5, Sec. 5.2].

A Nuprl proof is a tree of sequents where each node corresponds to the
application of a rule. Because we have proved that the above mentioned rules
are correct, using the definition of the validity of a rule, and by induction on the
size of the tree, this means that the sequent at the root of the tree is true w.r.t.
the above PER semantics. Hence, a proof of False, for any meaningful definition
of False, i.e., a type with an empty PER such as (0 = 1 ∈ Z), would mean that
the PER is in fact non-empty, which leads to a contradiction.
Building a Trusted Core of Nuprl. Using our proofs that the Nuprl rules are
correct, and the definition of the validity of rules, we can then build a verified
proof refiner (rule interpreter) for Nuprl. Our technical report [5, Sec. 5.3] illus-
trates this by presenting a Ltac based refiner in Coq that allows one to prove
Nuprl lemmas. These proofs are straightforward translations of the correspond-
ing Nuprl proofs and we leave for future work the automation of this translation.
An appealing use of such a tool is that it can then be used as Nuprl’s trusted
core which checks that proofs are correct, i.e., if the translation typechecks in
Coq, this means that the Nuprl proof is correct.

14

May 20, 2014

7 Related Work
Perhaps the closest work to ours is that of Barras [7]. He formalizes Werner’s [37]
set theoretic semantics for a fragment of Coq in Coq by first axiomatizing the
required set theory in Coq. While this fragment has the Peano numbers, induc-
tive types are missing. Werner’s semantics assumes the existence of inaccessible
cardinals to give denotations to the predicative universes of Coq as sets. In ear-
lier work, Barras and Werner [8] provide a deep embedding of a fragment of Coq
that excludes universes and inductive types. They thereby obtain a certified
typechecker for this fragment.

Similarly, Harrison [20] verified: (1) a weaker version of HOL Light’s kernel
(with no axiom of infinity) in HOL Light (a proof assistant based on classical
logic); and (2) HOL Light in a stronger variant of HOL light (by adding an
axiom that provides a larger universe of sets). Myreen et al. are extending this
work to build a verified implementation of HOL Light [31] using their verified
ML-like programming language called CakeML [25]. They fully verified CakeML
in HOL4 down to machine code. Similarly, Myreen and Davis formally proved
the soundness of the Milawa theorem prover [30] (an ACL2-like theorem prover)
which runs on top of their verified Lisp runtime called Jitawa [29]. Both these
projects go further by verifying the implementations of the provers down to
machine code. Also, Nuprl’s logic is different from those of HOL and Milawa,
e.g., HOL does not support dependent types and Milawa’s logic is a first-order
logic of total, recursive functions with induction.

Also, Buisse and Dybjer [12] partially formalize a categorical model of an
intensional Martin-Löf type theory in Agda.

Uses of induction-recursion to define shallow embeddings of hierarchies of
Martin-Löf universes have often been described in the literature [17,27]. How-
ever, because we have a deep embedding, our inductive-recursive definition is
parametrized over the already defined terms. This deep-embedding approach is
required for our goal of extracting an independent correct by construction proof
assistant. Also, the extensionality of Nuprl complicates our definitions a bit. For
example, we have to define equality of types instead of just typehood. Daniels-
son [16] uses induction-recursion to define a deep embedding of a dependently
typed language that does not have universes and inductive types.

8 Future Work and Acknowledgments
As future work, we want to formalize a tactic language and build a user (Emac-
s/NetBeans) interface for our verified Nuprl version, based on the code extracted
from our Coq development. Also, we plan to add a way to directly write inductive
definitions (possibly parametrized and/or mutual) and have a formally verified
and transparent translation to our formalized parametrized W types. Finally, we
plan to formalize a typechecker for a large part of Nuprl.

We thank the Coq and Agda mailing lists’ members for helping us with var-
ious issues while using these tools. We thank Mark Bickford, Robert L. Consta-
ble, David Guaspari, and Evan Moran for their useful comments as well as Jason
Gross from whom we learned that Agda allows inductive-recursive definitions.

15

May 20, 2014

References
1. Interactive Theorem Proving - 4th Int’l Conf., volume 7998 of LNCS. Springer,

2013.
2. Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Representing nested induc-

tive types using W-types. In ICALP 2004, volume 3142 of LNCS, pages 59–71.
Springer, 2004.

3. Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language.
PhD thesis, Cornell University, 1987.

4. Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph
Kreitz, Lori Lorigo, and Evan Moran. Innovations in computational type theory
using Nuprl. J. Applied Logic, 4(4):428–469, 2006. http://www.nuprl.org/.

5. Abhishek Anand and Vincent Rahli. Towards a formally verified proof assis-
tant. Technical report, Cornell University, 2014. http://www.nuprl.org/html/
Nuprl2Coq/.

6. Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and
Stephanie Weirich. Engineering formal metatheory. In POPL 2008, pages 3–15.
ACM, 2008.

7. Bruno Barras. Sets in Coq, Coq in sets. Journal of Formalized Reasoning, 3(1):29–
48, 2010.

8. Bruno Barras and Benjamin Werner. Coq in Coq. Technical report, INRIA Roc-
quencourt, 1997.

9. Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program De-
velopment. SpringerVerlag, 2004. http://coq.inria.fr/.

10. Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda - a functional
language with dependent types. In Theorem Proving in Higher Order Logics, 22nd
Int’l Conf., volume 5674 of LNCS, pages 73–78. Springer, 2009. http://wiki.
portal.chalmers.se/agda/pmwiki.php.

11. Edwin Brady. Idris —: systems programming meets full dependent types. In 5th
ACM Workshop Programming Languages meets Program Verification, PLPV 2011,
pages 43–54. ACM, 2011.

12. Alexandre Buisse and Peter Dybjer. Towards formalizing categorical models of
type theory in type theory. Electr. Notes Theor. Comput. Sci., 196:137–151, 2008.

13. Venanzio Capretta. A polymorphic representation of induction-recursion. www.cs.
ru.nl/~venanzio/publications/induction_recursion.ps, 2004.

14. R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki,
and S. F. Smith. Implementing mathematics with the Nuprl proof development
system. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

15. Karl Crary. Type-Theoretic Methodology for Practical Programming Languages.
PhD thesis, Cornell University, Ithaca, NY, August 1998.

16. Nils Anders Danielsson. A formalisation of a dependently typed language as an
inductive-recursive family. In Types for Proofs and Programs, Int’l Workshop,
volume 4502 of LNCS, pages 93–109. Springer, 2006.

17. Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions
in type theory. J. Symb. Log., 65(2):525–549, 2000.

18. Peter Dybjer and Anton Setzer. Induction-recursion and initial algebras. Ann.
Pure Appl. Logic, 124(1-3):1–47, 2003.

19. Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould

16

http://www.nuprl.org/
http://www.nuprl.org/html/Nuprl2Coq/
http://www.nuprl.org/html/Nuprl2Coq/
http://coq.inria.fr/
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
www.cs.ru.nl/~venanzio/publications/induction_recursion.ps
www.cs.ru.nl/~venanzio/publications/induction_recursion.ps

May 20, 2014

Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi, and Laurent
Théry. A machine-checked proof of the odd order theorem. In ITP’13 [1], pages
163–179.

20. John Harrison. Towards self-verification of hol light. In IJCAR 2006, volume 4130
of LNCS, pages 177–191. Springer, 2006.

21. Douglas J. Howe. Equality in lazy computation systems. In Proceedings of Fourth
IEEE Symposium on Logic in Computer Science, pages 198–203. IEEE Computer
Society, 1989.

22. Douglas J. Howe. Semantic foundations for embedding HOL in Nuprl. In Martin
Wirsing and Maurice Nivat, editors, Algebraic Methodology and Software Technol-
ogy, volume 1101 of LNCS, pages 85–101. Springer-Verlag, Berlin, 1996.

23. Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of
parameterization in coinductive proof. In POPL’13, pages 193–206. ACM, 2013.

24. Alexei Kopylov. Type Theoretical Foundations for Data Structures, Classes, and
Objects. PhD thesis, Cornell University, Ithaca, NY, 2004.

25. Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML:
a verified implementation of ML. In POPL’14, pages 179–192. ACM, 2014.

26. Xavier Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In POPL’06, pages 42–54. ACM, 2006.

27. Conor McBride. Hier soir, an OTT hierarchy, 2011. http://sneezy.cs.nott.ac.
uk/epilogue/?p=1098.

28. P.F. Mendler. Inductive Definition in Type Theory. PhD thesis, Cornell University,
Ithaca, NY, 1988.

29. Magnus O. Myreen and Jared Davis. A verified runtime for a verified theorem
prover. In ITP 2011, volume 6898 of LNCS, pages 265–280. Springer, 2011.

30. Magnus O. Myreen and Jared Davis. The reflective milawa theorem prover is sound
(down to the machine code that runs it), 2014. Accepted to ITP 2014.

31. Magnus O. Myreen, Scott Owens, and Ramana Kumar. Steps towards verified
implementations of hol light. In ITP’13 [1], pages 490–495.

32. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

33. Christine Paulin-Mohring. Inductive definitions in the system Coq - rules and
properties. In TLCA’93, volume 664 of LNCS, pages 328–345. Springer, 1993.

34. Vincent Rahli, Mark Bickford, and Abhishek Anand. Formal program optimization
in Nuprl using computational equivalence and partial types. In ITP’13 [1], pages
261–278.

35. Anton Setzer. Proof theoretical strength of Martin-Löf Type Theory with W-type
and one universe. PhD thesis, Ludwig Maximilian University of Munich, 1993.

36. I.A.S. The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Univalent Foundations, 2013.

37. Benjamin Werner. Sets in types, types in sets. In TACS, volume 1281 of LNCS,
pages 530–546. Springer, 1997.

17

http://sneezy.cs.nott.ac.uk/epilogue/?p=1098
http://sneezy.cs.nott.ac.uk/epilogue/?p=1098

	Towards a Formally Verified Proof Assistant

