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Abstract

We report on the results of a two year project to formalize the seman-
tics of cubical type theory in Nuprl. We were able to interpret cubical type
theory (without higher inductive types) in Nuprl’s extensional construc-
tive type theory, thus verifying that a univalent higher dimensional type
theory can be given a purely constructive interpretation. The univalence
axiom is provable in cubical type theory from the rules for the Glue type.
Verifying the rules for the Glue type led to the largest proofs ever done in
Nuprl. We also began an investigation into how to relate synthetic higher
dimensional type theory with constructive analysis and discovered that
the intuitionistic theory of analysis (using the FAN theorem and the con-
tinuity principle) makes building a connection between the two theories
much easier.

1 Univalence

There is great interest in Vladimir Voevodsky’s Univalent Foundations because
it could provide a sufficiently abstract formal foundation that mathematicians
can actually use, while, at the same time being sufficiently concrete so that
proofs written using it can be verified by a computer. Voevodsky’s major in-
sight was that a type theory that satisfied the univalence axiom could be defined.
Essentially, the univalence axiom says that when we can prove that there is a
bijection between types A and B then we can also prove that A and B are equal
in the universe of types. This kind of type equality is closer to normal math-
ematical practice than the more restrictive type equality used in the theories
implemented in Nuprl or Cogq.

Voevodsky gave a semantics for a univalent type theory using Kan simplicial
sets but his proofs made use of a strong form of the axiom of choice. It was
an open question whether a univalent type theory could be given a purely con-
structive interpretation. Such an interpretation is desirable because then proofs
in the theory would generate programs. In particular, once an integer bound or
invariant is proved to exist, it could be computed.

2 Goals of the project

The cubical type theory defined by Coquand and colleagues is a theory that
has many of the features desired for Univalent Foundations and that has a
constructive interpretation. The interpretation was given using an informal
constructive set theory.



The first major goal of this project was to build a formal, constructive model
of cubical type theory in the constructive type theory of the Nuprl proof system
and verify that all the rules of cubical type theory hold in this model.

The second major goal of the project was to investigate how cubical type
theory and Nuprl’s type theory can coexist and collaborate within a new proof
assistant — a next generation proof assistant.

Since Nuprl has an extensive formalization of constructive analysis, a third
goal of the project was to make some connections between the concepts of
topological spaces, homotopies, homotopy groups, etc. as defined synthetically
in cubical type theory and the corresponding concepts defined analytically in
constructive analysis.

3 Results on the first goal: Formalization

Most of the technical work needed to build the formalization of cubical type
theory in Nuprl has been accomplished and is published on the Nuprl website
at www.nuprl.org/wip/Mathematics/cubical!type!theory/index.html

To do this, several “background” theories had to be formalized first, in par-
ticular, category theory and theories of free distributive lattices. Some of this
had been done earlier for a formalization of a precursor to cubical type theory,
but we have since added more to these background theories.

The crucial concept, and technical hurdle for building a constructive model
of Voevodsky’s Univalence Axziom, is the notion of a fibrant type that is a type
with a composition structure. Types are analogous with (topological) spaces,
and the composition structure allows, among other things, paths in the space to
be composed, and this is the basis for the properties of equality in the theory.
To formalize cubical type theory we must give the constructive realizer (i.e. the
program) for composition operations in each type. Cubical type theory has basic
types like numbers, and the Pi and Sigma types for functions and pairs. For each
type, T, there is also a type Path(T) corresponding to equality in T. In addition
to these, cubical type theory adds “System” types and, crucially, “Glue” types.
Members of the System type are constructed from lower-dimensional “faces”
that are compatible where they overlap. The Glue type is a major innovation
of cubical type theory. Members of the Glue type carry the data needed to
“glue” equivalent things together, and its composition is used to constructively
validate the univalence axiom.

When we wrote our proposal for this work we had proved one major technical
lemma about composition operators. Since then we have proved that all the
composition operators needed for cubical type theory exist. The composition
for the Glue type is, in fact, the most technically difficult part of the whole
development. The formal proof that the Glue composition operation has the
needed properties is the single largest proof in the entire Nuprl library and took
many weeks to construct. Even to automatically recheck that proof takes Nuprl
two hours.

The realizer for the Glue composition operation is a Nuprl program that
can be written out on one slide using the realizers of other theorems. We can
make a self-contained program that includes all the other needed code by asking
Nuprl to translate the realizer into LISP. When we do that, the code for the
Glue composition operator is 907 lines of LISP.
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It is important that we actually synthesize the programs that realize the
constructive model of cubical type theory. Here is an interesting example of what
could be done with such programs. In his 2016 thesis Guillaume Brunerie used
homotopy type theory (as in the HoTT book) to prove that m4(S3) ~ Z/27Z. He
had earlier proved that there exists a natural number n such that m4(S3) ~ Z/nZ
but because the implementation of homotopy type theory he used did not have
a fully constructive interpretation, he could not simply use the proof of that
theorem to compute n and find that n = 2. Instead, he had to do many more
formal proofs to establish that fact. Once we have a full implementation of
cubical type theory that includes the higher inductive types needed for Brunerie’s
first proof, we will be able to compute such numbers and verify n = 2 by
computation.

Cubical type theory also has a universe U of (fibrant) types. Two types
A and B are equal if there is a path between them in U. Using the Pi and
Sigma types, Voevodsky defines Equiv(A, B) the type of equivalences between
A and B (essentially bijections between A and B). Univalence asserts that an
equivalence between A and B corresponds to a path in U between A and B,
and, in fact, this correspondence is itself an equivalence

Equiv(Pathy A B, Equiv(A, B))

In cubical type theory, univalence is not an axiom but a theorem, derivable
from the other rules, in particular, the rules for the Glue type. In order to
verify univalence and other rules about the universe U we must give the formal
definition of a universe of fibrant types and define the composition structure
for the universe. In the Nuprl formalization we were able to define an infinite
hierarchy of fibrant universes, U, ¢ = 0,1,2,.... Each U; has a composition
structure, making it fibrant, so we have U; € U, ;1.

Proving the existence of a composition operation for U; is another challenging
part of the theory. The composition operator for Glue can be used to build a
composition operator for the universe and we have completed that construction
and proof. The program for that composition operator adds an additional 300
lines of LISP code.

3.1 Two discoveries

The formalization of cubicalTT in Nuprl presented many technical challenges
requiring us to develop new tactics and prove over one thousand lemmas. We
highlight here two discoveries that we made during the formalization, that were
unexpected before we did the work.

The first discovery concerns the use of nominal logic. Nominal logic in-
troduces a primitive concept of names and has new rules about formulas that
mention names. Set theory with urelements is often used to give a semantics
for nominal logic. In Nuprl, we had already introduced a type of unguessable
atoms and given a super-valuation semantics for these atoms. The rules for
atoms make Nuprl a nominal logic.

To construct a path between two terms a and b in cubical type theory, one
can introduce a new dimension 7 and construct a term p where p = a, when
¢t =0 and and p = b when i« = 1. The path abstraction operator (i)p binds i and
is a path between a and p that is independent of the dimension ¢. The first work



on a constructive interpretation for cubical type theory used names to represent
formal dimensions, and this use of nominal logic seemed to be essential to the
formal semantics.

We initially used Nuprl’s atoms in the formalization of path types and path
abstraction. However, as we proceeded with the formalization we realized that
the type Path4 a b could be defined as a subtype of the free path space, 1T — A
where I is the formal interval type in cubical TT. Using this definition we did not
have to use either atoms or quotient types, and this gave us a simpler semantics.
In the end, all use of nominal logic disappeared, showing that nominal logic is
not, in fact, needed to formalize cubical type theory.

The second discovery concerns the formal definition of fibrant types. Bezem,
Coquand, and Huber, discovered that a constructive model of univalence needs
a stronger invariant than Voevodsky’s model based on Kan simplicial sets. Fi-
brant cubical types must have uniform composition operations. The uniformity
condition is expressed by quantifying over all cubical sets, and this is problem-
atic. In type theory, we can not quantify over all sets (i.e types), we can only
quantify over all types is a given universe, say the n'” universe. The resulting
proposition is then a member of the (n + 1)** universe. But then, the definition
of a universe of fibrant types becomes impredicative since if we put into the uni-
verse all the fibrant cubical types in Nuprl universe n, the uniformity condition
that defines which types are fibrant also quantifies over universe n (and such
impredicative definitions can not be shown to be well formed.)

To solve this problem, Coquand was able to express the needed uniformity
condition by quantifying over only representable cubical sets, not all cubical
sets (the representable cubical sets come from the Yoneda embedding of the base
category of formal cubes.) The drawback of this approach was that the reasoning
about composition operators becomes more difficult. As we proceeded with
the formalization, we discovered that we could prove that the two definitions
of uniform composition operators were, in fact, equivalent. This means that
even though the “nice” definition is in a higher universe, it has a realizer if
and only if the “representable” version has a realizer. Therefore we can use
the “representable” definition to define the universe of fibrant types, but then
reason about them using the “nice” definition.

This pleasant phenomenon was unexpected, but welcome. Coquand has since
found a more categorical explanation for this phenomenon and has written a
paper on the topic and lectured about it.

4 Results on second goal: Combining cubicalTT
and Nuprl

Since we have a formal semantics of cubical TT in Nuprl, the meaning of a theo-
rem proved in cubcallTT is a theorem of Nuprl. But we want a closer connection
between the two type theories. It would be especially nice if cubicalTT could
be seen as a conservative extension of Nuprl, but that can not be exactly true
because Univalence is not true for the Nuprl types.

However, we made some progress relating the two type theories. For any
Nuprl type A there is a cubical type discrete(A) in which all paths are con-
stant. The cubical type of natural numbers is just discrete(N) where N is the



Nuprl natural numbers. For any Nuprl type family B € A — Type there is a
cubicalTT family, discrete(B) over discrete(A), and we can form the cubical
Pi and Sigma types II(discrete(A) discrete(B) and X(discrete(A) discrete(B).
We have proved that there are bijections between these types and the discrete
versions of the corresponding Nuprl dependent function and dependent pair
types. So, for example,

II(discrete(A) discrete(B) ~ discrete(a : A — B(a))

As we mentioned, any path p from a to b in discrete(A) is equal to the con-
stant path refl(a), and therefore discrete(A) satisfies the uniqueness of identity
proofs (UIP). We would like to show that the Nuprl types can be embedded in
the cubical types as exactly those types for which every path is refl. Since the
cubical universe U does not have this property (a consequence of Univalence),
it is not the discrete version of the Nuprl universe. So in a combined Nuprl and
cubical TT theory there will be two kinds of universes. The cubical universe of
fibrant types and the universe of discrete types.

5 Results on third goal: relating cubicalTT and
constructive analysis

This third goal was not one of the initial goals of the project but there is interest
in this topic because Univalent Foundations has been proposed as a theory in
which such seemingly disparate disciplines as quantum physics and computer
science can share a common foundation. To understand how results proved in a
formal synthetic theory of higher-dimensional types can be relevant to the real
world of physics, we need a better understanding of how some of the abstract
concepts of homotopy type theory relate to the continuous mathematics of the
real and complex numbers.

To this end, we studied the work of Mike Shulman on real-cohesive homotopy
type theory that attempts to connect homotopy type theory with real analysis.
He introduced some new modalities to control the topology of the space as-
sociated with a type and introduce the notion of a crisp variable. Using this
rather complex infrastructure he derives a weak version of Brouwer’s fixedpoint
theorem from results proved in homotopy type theory.

One of Shulman’s axioms about the real numbers stated that if sets A and B
cover R and are crisp then their intersection AN B is non-empty. We wondered
how the concept of crisp could be interpreted to make this axiom true in Nuprl.
We made the somewhat startling discovery that in intuitionistic mathematics, as
implemented in Nuprl, this axiom is true with no restrictions on A and B (that
is, erisp can be interpreted, trivially, as true). This discovery, formally proved in
Nuprl, follows from the continuity principle for numbers that is a fundamental
fact of intuitionistic mathematics and is true of Nuprl’s type theory. This result
was published in Mathematical Logic Quarterly in the article Connectedness of
the continuum in intuitionistic mathematics.

Based on this result, we think that the relation between homotopy type
theory and analysis will work out much more easily in intuitionistic mathematics
than in classical analysis or in Bishop-style constructive analysis. A fundamental
theorem of Brouwer’s, proved in Nuprl using intuitionistic mathematics, is that



all functions from a compact metric space X to a metric space Y are uniformly
continuous. This fact makes some of the machinery used by Shulman superfluous
so that a simpler connection between homotopy type theory and intuitionistic
analysis should be possible.

We think that such a connection will be based on some other fundamental
results of Brouwer, namely his simplicial approximation theorem. In the seman-
tics of cubical type theory, however, simplicial sets have been replaced by cubical
sets in order to overcome some problems that would otherwise require the ax-
iom of choice. So it is likely that a cubical version of Brouwer’s approximation
theorem will be more useful.

To begin building such a constructive theory we formalized the theory of
cubical complexes in Nuprl and used this theory to formalize a new, cubical,
version of a proof by Karol Sieklucki (1983) of the no retraction theorem. It
is a little-known fact that the no retraction theorem constructively implies the
approximate version of Brouwer’s fixedpoint theorem (for every function f from
a unit ball to itself, and for every e > 0 there is a point = for which the distance
from x to f(x) is less than €).

We thereby gave a complete formal proof of (the approximate) Brouwer’s
fixedpoint theorem in Nuprl. This theorem is weaker than the classical version
because we can find only an approximate fixedpoint for any € (in classical anal-
ysis, using the Bolzano-Weirstrauss theorem, we could then get the existence
of an exact fixedpoint, but this is not true constructively). But our fixedpoint
theorem is stronger than the classical or Bishop-style theorem because it holds
for all functions on the unit ball (in any finite dimension n) rather than just the
continuous functions.

6 Further work

There are a few parts of a full interpretation of Univalent Foundations that
remain to be formalized. In particular, the theory of higher inductive types.

The paper by Cohen, Coquand, and Mortberg on cubicalTT does not cover
a general form of higher inductive types, but it does sketch how higher inductive
types for n-spheres and also for truncation types can be done.

Eventually, we want to complete of higher inductive types in Nuprl, if not
the general case then at least the constructions of spheres and truncation types.
When those are done we can say that the current cubicalTT is fully formalized
in Nuprl.

A complete semantics for cubical TT does not immediately give us a version
of cubicalTT that we can use, inside Nuprl, to easily construct proofs. The
reason is that the semantics is expressed in a “name-free” form. A sequent
like x:Nat, i:I, y:A F B(x,i,y) mentions the names x,i, and y. In the semantics
the context x:Nat, i:I, y:A is represented by a product Nat.I.A with no names,
so the expression B(x,i,y) must be represented by B(p(p(q)), p(q), q) where q
returns the last element of a context and p returns the part of the context with
the last element removed. Thus, we can think of q as the number 0 and p(n) =
n+1. Then expressions like p(p(q)) are DeBruijn indices that refer to parts of
the name-free context. This name-free representation is convenient for proving
the rules of cubicalTT from the semantics, but it is inconvenient for carrying
out proofs in the theory.



Therefore we will build a syntactical version of cubical TT that uses names.
Defining the meaning of the syntactic version and proving its rules will require
reasoning about substitution and alpha-equality of syntactic terms. Once that
work has been done we will have a version we can use to carry out proofs in
cubicalTT in the intended way. That version will be easier to integrate with
Nuprl.

7 Dissemination of Results

Once we completed the full formal model of cubicalTT (without the higher in-
ductive types) we wrote an arXiv paper on the formalization of presheaf models
of type theory in Nuprl. We also lectured on the formalization of cubicallTT
in Nuprl is a course in Germany. In the audience were most of the experts
in cubical type theore including Thierry Coquand and Simon Huber. So, it is
now well-known that a fully constructive interpretation of cubical type theory
has been constructed in Nuprl. Also, Coquand and Mortberg have been giving
talks about cubicalTT in conferences and workshops, and these talks include
discussion of the Nuprl formal model and the realizers we have constructed for,
e.g. composition for the Glue type. As a result, other authors are citing our
work, using the formal content published on the Nuprl website as the reference.
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