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Contru
tive type theories su
h as Coq, Agda, and Nuprl all have some powerful primitive

form of indu
tive 
onstru
tion. The soundness of the rules for these indu
tive 
onstru
tions 
an

be di�
ult to prove. In this note we show that one powerful form of indu
tive 
onstru
tion,

parameterized families of W-types, 
an be internally 
onstru
ted in type theory using a general

form of Brouwer's bar indu
tion rule and indu
tion on a primitive type of natural numbers,

from types that need not be de�ned indu
tively. We �rst 
onstru
t the 
ore
ursive family

of non-wellfounded types and then 
onstru
t their wellfounded parts in su
h a way that the

desired indu
tion prin
iple follows from bar indu
tion. All the results have been formally

proved in Nuprl, and details 
an be found here: http://www.nuprl.org/LibrarySnapshots/

Published/Version1/Standard/
o-re
ursion/sbi-param-W-indu
tion.html.

S ⊑ T means that type S is a subtype of type T . A type fun
tion F is monotone if S ⊑
T ⇒ F (S) ⊑ F (T ), and preserves ω-limits if

⋂

n∈N
F (Xn) ⊑ F (

⋂

n∈N
Xn). A type T is a �xed

point of F if T ⊑ F (T ) and F (T ) ⊑ T . For any type T , T ⊑ Top, where Top =
⋂

x∈V oid V oid.

For any monotone, ω-limit preserving fun
tion F , the type 
ore
(F ) =
⋂

n∈N
Fn(Top), where

the iteration Fn
is de�ned by primitive re
ursion, is the greatest �xed point of F . We often

write Ap rather than A(p) and Bp,a rather than B(p, a).

Parameterized families of co-W and W-types. For parameter type P and fun
tions A ∈ P → Type,

B ∈ p :P → Ap → Type, and C ∈ p :P → a :A → Bp,a → P , the family WA,B,C(p) is the least
�xed point of the fun
tional FA,B,C on type families G ∈ P → Type de�ned by

FA,B,C(G) = λp. a :A× (b :Bp,a → G(Cp,a,b))

Sin
e FA,B,C is monotone and preserves ω-limits (on type families), we 
an easily 
onstru
t

the greatest �xed point family, coWA,B,C , as follows:

coWA,B,C = λp.
⋂

n∈N

Fn
A,B,C(λq. Top)(p)

Then, for SA,B,C = p : P × w : coWA,B,C × (Bp,π1(w) + Unit), a path has type Path

A,B,C =
{s : N → SA,B,C | ∀n : N. 
on(s(n), s(n+ 1))} where


on(〈p, 〈a, f〉, d1〉, 〈q, w2, d2〉) ⇔ (d1 = inl(b) ⇒ (q = Cp,a,b ∧ w2 = f(b)))

A path s halts, halts(s), if ↓∃n : N. ∃p.∃w. s(n) = 〈p, w, inr()〉, where the squash of a type T is

the type ↓T that is empty if T is empty and is Unit if T is non-empty. Paths that start at p, w

have type

Path

A,B,C
p,w =

{

s : PathA,B,C | ∃d. s(0) = 〈p, w, d〉
}

and we de�ne the type WA,B,C(p) by

WA,B,C(p) =
{

w : coWA,B,C | ∀s : PathA,B,C
p,w . halts(s)

}

It is relatively straightforward to prove that WA,B,C is a �xed point of the fun
tional FA,B,C .
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To show that it is the least �xed point we use bar indu
tion to prove that its indu
tion prin
iple

is witnessed by:

λC.λind.λpar.λw. letre
 F (p, w) = let a, f = w in ind(p, a, f, λb.F (C[p; a; b], f(b))
in F (par;w)

Bar Induction. A �nite sequen
e s of length k has type Vk(T ) = Nk → T , and we append

t to s using s ⊕k t = λi. if i < k then s(i) else t. Our bar indu
tion rule is restri
ted to


on
lusions of the form a(k, s) ∈ X(k, s), whi
h, in Nuprl, have trivial 
onstru
tive 
ontent.

Let ind(R, T, a,X, k, s, t) be the formula

∀t : {t : T |R(k, s, t)} . a(k + 1, s⊕k t) ∈ X(k + 1, s⊕k t)

The (restri
ted) bar indu
tion rule is:

H ⊢ T ∈ Type H, k : N, s : Vk(T ), t : T ⊢ R(k, s, t) ∈ Type

H, k : N , s : Vk(T ), 
on(R, k, s) ⊢ B(k, s) ∨ ¬B(k, s)
H, f : N → T, ∀i : N. R(i, f, f(i)) ⊢↓∃n : N. B(n, f)

H, k : N , s : Vk(T ), 
on(R, k, s), B(k, s) ⊢ a(k, s) ∈ X(k, s)
H, k : N , s : Vk(T ), 
on(R, k, s), ind(R, T, a,X, k, s, t) ⊢ a(k, s) ∈ X(k, s)

H ⊢ a(0, z) ∈ X(0, z)

The �rst two premises give the type of the spread law R. The next two premises state that

B is a de
idable bar on the spread de�ned by R. The �fth and sixth premises are the base and

indu
tion steps of the proof by bar indu
tion for the term a(0, z) ∈ X(0, z) in the 
on
lusion of

the rule. This is a strong form of bar indu
tion be
ause the spread law R 
an be any relation

not ne
essarily de
idable.

Sin
e Nuprl allows general re
ursive de�nitions we 
an de�ne bar re
ursion as

br(d, b, i, n, s) = if d=inl(x) then b(n, s, x) else i(n, s, λt. br(d, b, i, n+ 1, s⊕n t))

and, using the restri
ted bar indu
tion rule, we prove that bar re
ursion is the realizer for the

general, unrestri
ted form of bar indu
tion.

Remarks.

1. As des
ribed in a 
ompanion paper, all the non-indu
tive types 
an be built using only

three type 
onstru
tors, interse
tion, equality, and PER, whi
h forms a type from a partial

equivalen
e relation on 
losed terms.

2. Anand and Rahli have implemented Nuprl in Coq by de�ning its 
omputation system,

type system, sequents and rules. The type system they de�ne has W types as primitives

and does not in
lude Mendler's re
ursive types. They have both an impredi
ative model

of all the universes and a predi
ative model of �nitely many.

3. Nuprl 
urrently uses Mendler's re
ursive types, but every use of a re
ursive type in our

library 
ould be repla
ed with a W-type.

4. The results in this paper redu
es the soundness of indu
tive 
onstru
tions to the soundness

of the bar indu
tion rule given above. Be
ause bar indu
tion is true in 
lassi
al logi
, we

should be able to prove it in the impredi
ative Coq model of Nuprl using the ex
luded

middle axiom. This is work in progress.

5. We believe that analogues of Coq's indu
tive types 
an be de�ned using parameterized

W-types be
ause Nuprl's type theory satis�es fun
tion extensionality.

6. We do not know whether Agda's indu
tive-re
ursive 
onstru
tions 
an be de�ned using

the method of this paper (
ore
ursion and bar indu
tion).
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