
The Logic of Events, a framework to

reason about distributed systems

Mark Bickford, Vincent Rahli, Robert Constable

Cornell University and ATC-NY

January 24, 2012

PRL team EventML January 24, 2012 1/16

Summary

We have :

◮ A logical specification language (the logic of events) that
formalizes the message sequence diagrams systems
engineers use.

◮ A logical and compositional abstraction (event classes)
from which we can synthesize code.

◮ A language (EventML) for defining event classes and their
high-level properties.

◮ Automated tools that prove invariants and derive
“inductive logical forms” that streamline the proofs of
distributed algorithms.

◮ In two days we now construct proofs of agreement and
validity properties of a consensus algorithm.

◮ Those proofs used to take a month to create.

PRL team EventML January 24, 2012 2/16

Proofs as programs → Proofs as processes

◮ Programs are the evidence
for Propositions.

PRL team EventML January 24, 2012 3/16

Proofs as programs → Proofs as processes

◮ Programs are the evidence
for Propositions.

◮ Event ordering =
〈E , loc(e), info(e),
e1 < e2〉 + six axioms

◮ Event Logic =
propositions in CTT about
event orderings

◮ Evidence ?? could be
IO-Automata, π-calculus,
. . .

loc1 loc2 loc3XXXXXXXz

msg
a

•
e1 @

@
@
@
@
@
@
@
@R

msg
b

•e4

XXXXXXXXXXXXXXXXXXz

m
sg
c

•e2���������9

msgd

•e3

HHHHHHHHHj

ms
g e

•e5

����������

msg
f

•e6

PRL team EventML January 24, 2012 4/16

Event class: the link to computation

An event class X of type class(T) is both

◮ A relation v ∈ X (e)
◮ X observes v at event e
◮ X associates information v with event e

◮ A function X : EO → E → Bag(T)

PRL team EventML January 24, 2012 5/16

Event class: the link to computation

An event class X of type class(T) is both

◮ A relation v ∈ X (e)
◮ X observes v at event e
◮ X associates information v with event e

◮ A function X : EO → E → Bag(T)

◮ v ∈ Base(hdr,type)(e) ⇔ info(e) = 〈hdr, type, v〉

PRL team EventML January 24, 2012 6/16

Example: consensus safety properties
Agreement

If commands c and c ′ are chosen for the nth command then
c = c ′.

∀e1,e2:E. ∀n:Z. ∀c,c’:Cmd.

<n, c> ∈ notify’base(e1)

⇒ <n, c’> ∈ notify’base(e2)

⇒ c = c’

Validity Any command decided on must have been proposed.

∀e:E. ∀n:Z. ∀c:Cmd.

<n, c> ∈ notify’base(e)

⇒ (∃e’:E. (e’ < e) ∧

<n, c> ∈ propose’base(e’))

PRL team EventML January 24, 2012 7/16

Event class combinators
(used here to structure 2/3 majority consensus algorithm)

main = Rep l i c a @ l o c s

R e p l i c a = NewVoters >>= \p . Voter p

PRL team EventML January 24, 2012 8/16

Event class combinators
(used here to structure 2/3 majority consensus algorithm)

main = Rep l i c a @ l o c s

R e p l i c a = NewVoters >>= \p . Voter p

Voter (n , c) = Round ((n , 0) , c)
| | (No t i f y n)
| | ((NewRounds n >>= Round)

u n t i l (No t i f y n))

Round (n i , c) = SendVotes (n i , c)
| | Once (Quorum n i)

Event classes and combinators are expressible in EventML.

PRL team EventML January 24, 2012 9/16

Computation and logic

Event classes have two facets:

◮ computational:
◮ they can be implemented as processes (tail recursive)
◮ program for each combinator derived from constituent

programs
◮ all constructions proved correct in Nuprl
◮ result: a verified code synthesizer from event classes to

processes

◮ logical:
◮ they specify information flow (using the class relation)
◮ relation for each combinator derived from constituent

relations
◮ derived relations proved correct in Nuprl
◮ result: a verified translator from event classes to logical

relations

PRL team EventML January 24, 2012 10/16

Cooperation with a Logical Programming

Environment (LPE)

PRL team EventML January 24, 2012 11/16

EventML prelude
s p e c i f i c a t i o n r s c 4

(∗ −−−−−− PARAMETERS −−−−−− ∗)

(∗ consensus on commands o f a r i b t r a r y t ype Cmd wi th e q u a l i t y d e c i d e r ∗)
paramete r Cmd, cmdeq : Type ∗ Cmd Deq

paramete r c o e f f : I n t
paramete r f l r s : I n t (∗ max number o f f a i l u r e s ∗)
paramete r l o c s : Loc Bag (∗ s e t o f e x a c t l y (3 ∗ f l r s + 1) l o c a t i o n s ∗)
paramete r c l i e n t s : Loc Bag (∗ l o c a t i o n s o f the c l i e n t s to be n o t i f i e d ∗)

(∗ −−−−−− CONSTANTS −−−−−− ∗)
import l e n g t h poss−maj l i s t −d i f f deq−member from−upto Memory−c l a s s

i n t−l i s t−member

(∗ −−−−−− TYPE FUNCTIONS −−−−−− ∗)

t ype I n n i n g = I n t
t ype CmdNum = I n t
t ype CI = CmdNum ∗ I n n i n g
type CC = CmdNum ∗ Cmd
type Vote = (CI ∗ Cmd) ∗ Loc

(∗ −−−−−− INTERFACE −−−−−− ∗)

i n t e r n a l vo t e : Vote
i n t e r n a l r e t r y : CI ∗ Cmd
i n t e r n a l de c i ded : CC
output n o t i f y : CC
i npu t p ropose : CC

PRL team EventML January 24, 2012 12/16

EventML

(∗ −− i n p u t s −− ∗)
l e t vo t e 2p rop l o c (((n , i) , c) , l o c ’) = {(n , c)} ; ;
c l a s s P roposa l = p r opo s e ’ b a s e | | (vo t e 2p rop o vo t e ’ b a s e) ; ;

(∗ −− output −− ∗)
l e t when new proposa l l o c (n , c) (max , m i s s i n g) =

i f n > max or deq−member (op =) n m i s s i n g then {(n , c)} e l s e {} ; ;

(∗ −− update −− ∗)
l e t u p d a t e r e p l i c a (n , c) (max , m i s s i n g) =

i f n > max
then (n , m i s s i n g ++ (from−upto (max + 1) n))
e l s e i f deq−member (op =) n m i s s i n g
then (max , l i s t −d i f f (op =) m i s s i n g [n])
e l s e (max , m i s s i n g) ; ;

(∗ −− New vo t e s s t a t e −− ∗)
c l a s s R e p l i c aS t a t e = Memory−c l a s s u p d a t e r e p l i c a (i n i t (0 , n i l)) P roposa l ; ;

(∗ −− New vo t e s ob s e r v e r −− ∗)
c l a s s NewVoters = when new proposa l o (Proposa l , R e p l i c aS t a t e) ; ;

(∗ −−−−−−−−−− Re p l i c a −−−−−−−−−− ∗)
c l a s s R e p l i c a = NewVoters >>= Vote r ; ;

(∗ −−−−−−−−−− Main program −−−−−−−−−− ∗)
main Re p l i c a @ l o c s ; ;

PRL team EventML January 24, 2012 13/16

EventML assertions

(∗ −− s t a t e −− ∗)
c l a s s R e p l i c aS t a t e = Memory−c l a s s u p d a t e r e p l i c a (i n i t (0 , n i l)) P roposa l ; ;

(∗ −− i n v a r i a n t s −− ∗)
i n v a r i a n t r e p l i c a i n v on (max , m i s s i n g) i n R e p l i c aS t a t e
== max >= 0
/\ f o r a l l x : I n t , i n t−l i s t −member x m i s s i n g => max > x /\ x > 0 ; ;

Automated tactics prove many assertions automatically.

PRL team EventML January 24, 2012 14/16

Inductive logical form (ILF)
automatically generated, automatically proved

∀[Cmd:ValueAllType]. ∀[clients:bag(Id)]. ∀[cmdeq:EqDecider(Cmd)]. ∀[coeff,flrs:Z]. ∀[locs:bag(Id)].
∀[es:EO’]. ∀[e:E]. ∀[rcvr:Id]. ∀[num,rnd:Z]. ∀[c:Cmd]. ∀[sndr:Id].

(<rcvr, rsc4_vote’msg(Cmd;<<<num, rnd>, c>, sndr>)> ∈ rsc4_Main(e)

⇐⇒ loc(e) ∈ locs

∧ (rcvr ∈ locs ∧ (sndr = loc(e)))

∧ (∃e’:{e’:E| e’ ≤loc e }

((∃max:Z
∃missing:Z List

(<max, missing> ∈ rsc4_ReplicaState(Cmd)(e’) ∧ ((max < num) ∨ (num ∈ missing))))

∧ (∃c’:Cmd
((((e = e’) ∧ (c = c’) ∧ (rnd = 0))

∨ ((∃e1:{e1:E| e1 ≤loc e }

(((∃maxr:Z. (maxr ∈ rsc4_NewRoundsState(Cmd) num(e1) ∧ (maxr < rnd)))

∧ (<<num, rnd>, c> ∈ rsc4_retry’base(Cmd)(e1)

∨ (∃sndr’:Id. <<<num, rnd>, c>, sndr’> ∈ rsc4_vote’base(Cmd)(e1))))

∧ (e = e1)))

∧ (no rsc4_Notify(Cmd;clients) num between e’ and e)))

∧ (<num, c’> ∈ rsc4_propose’base(Cmd)(e’)

∨ (∃rnd’:Z. ∃sndr’:Id. <<<num, rnd’>, c’>, sndr’> ∈ rsc4_vote’base(Cmd)(e’))))))))

PRL team EventML January 24, 2012 15/16

Conclusion

The right abstractions, embedded in a language that can
interface with automated theorem provers gives us the ability
to synthesize code that provably satisfies high-level
specifications.

PRL team EventML January 24, 2012 16/16

