The Logic of Events, a framework to
reason about distributed systems

Mark Bickford, Vincent Rahli, Robert Constable

Cornell University and ATC-NY

January 24, 2012

PRL team EventML January 24, 2012

1/16

Summary
We have :

» A logical specification language (the logic of events) that
formalizes the message sequence diagrams systems
engineers use.

» A logical and compositional abstraction (event classes)
from which we can synthesize code.

» A language (EventML) for defining event classes and their
high-level properties.

» Automated tools that prove invariants and derive
“inductive logical forms” that streamline the proofs of
distributed algorithms.

» In two days we now construct proofs of agreement and
validity properties of a consensus algorithm.
» Those proofs used to take a month to create.

PRL team EventML January 24, 2012

2/16

Proofs as programs — Proofs as processes

» Programs are the evidence
for Propositions.

PRL team EventML January 24, 2012 3/16

Proofs as programs — Proofs as processes

» Programs are the evidence
for Propositions. loc, loc, locs

» Event ordering =
(E, loc(e), info(e),
e; < &) + six axioms

» Event Logic =
propositions in CTT about

event orderings

» Evidence 77 could be
|O-Automata, m-calculus,

PRL team EventML January 24, 2012 4/16

Event class: the link to computation

An event class X of type class(T) is both
» A relation v € X(e)

» X observes v at event e
» X associates information v with event e

» A function X : EO — E — Bag(T)

PRL team EventML January 24, 2012

5/16

Event class: the link to computation

An event class X of type class(T) is both
» A relation v € X(e)

» X observes v at event e
» X associates information v with event e

» A function X : EO — E — Bag(T)
» v € Base(hdr,type)(e) < info(e) = (hdr, type, v)

PRL team EventML January 24, 2012

6/16

Example: consensus safety properties
Agreement

If commands ¢ and ¢’ are chosen for the n command then
c=c.
Vel,e2:E. Vn:Z. Vc,c’:Cmd.
<n, c¢> € notify’base(el)
= <n, c¢’> € notify’base(e2)
= c =c¢’

Validity Any command decided on must have been proposed.
Ve:E. Vn:Z. Vc:Cnd.
<n, c¢> € notify’base(e)

= (Je’:E. (e’ <e) A
<n, c¢> € propose’base(e’))

PRL team EventML January 24, 2012 7/16

Event class combinators

(used here to structure 2/3 majority consensus algorithm)

main = Replica @ locs
Replica = NewVoters >>= \p.Voter p
PRL team EventML January 24, 2012

8/16

Event class combinators

(used here to structure 2/3 majority consensus algorithm)

main = Replica @ locs
Replica = NewVoters >>= \p.Voter p

Voter (n,c) Round ((n,0),c)
| (Notify n)
| ((NewRounds n >>= Round)

until (Notify n))

Round (ni,c) = SendVotes (ni,c)
|| Once(Quorum ni)

Event classes and combinators are expressible in EventML.

PRL team EventML January 24, 2012 9/16

Computation and logic

Event classes have two facets:

» computational:

>

>

they can be implemented as processes (tail recursive)
program for each combinator derived from constituent
programs

all constructions proved correct in Nuprl

result: a verified code synthesizer from event classes to
processes

» logical:

>

>

they specify information flow (using the class relation)
relation for each combinator derived from constituent
relations

derived relations proved correct in Nuprl

result: a verified translator from event classes to logical
relations

PRL team EventML January 24, 2012

10/16

Cooperation with a Logical Programming
Environment (LPE)

Nuprl

Procol
simulator

- evaluator 1
- evaluator 2
- evaluator 3

correct-by-
synthesizef

Refiners

Library
extracted
code

programmability

Distributed
systems
properties

Event Logic
predicates

PRL team

EventML

Emacs Ul

Logical
translator

Type checker

valid
specification

synthesizer

Correct-by-construction

Event Logic Simulator
predicates - evaluator 1
- evaluator 2
- evaluator 3

EventML

January 24, 2012

11/16

EventML prelude

specification

rsc4

(* ———— PARAMETERS

(* consensus on commands of aribtrary type Cmd with

parameter Cmd, cmdeq

parameter coeff
parameter flrs
parameter locs

Int
Int
Loc

*)

Type * Cmd Deq

(* max number of failures

Bag (* set of exactly

(3 = flrs + 1)

equality decider =)

*)

locations =x)

Bag (* locations of the clients to be notified x)

list —diff deq—member from—upto Memory—class

parameter clients Loc
(¥ ———— CONSTANTS ———)
import length poss—maj

int—list —member
(* ———— TYPE FUNCTIONS ———)
type Inning = Int
type CmdNum = Int
type CI = CmdNum * Inning
type CC = CmdNum % Cmd
type Vote = (Cl % Cmd) = Loc
(¥ ————— INTERFACE ———)
internal vote Vote
internal retry Cl * Cmd
internal decided cC
output notify CcC
input propose cC

PRL team EventML

January 24, 2012

12/16

EventML

(* — inputs — x)

let vote2prop loc (((n,i),c),loc’) = {(n,c)} ;;

class Proposal = propose’base || (vote2prop o vote'base);;
(* — output — x)

let when_new_proposal loc (n,c) (max, missing) =

if n> max or deq—member (op =) n missing then {(n,c)} else {} ;;

(* — update —)

let update_replica (n,c) (max,missing) =
if n > max
then (n, missing ++ (from—upto (max + 1) n))
else if deq—member (op =) n missing
then (max, list—diff (op =) missing [n])
else (max, missing) ;;

(¥ — New votes state — x)
class ReplicaState = Memory—class update_replica (init (0,nil)) Proposal ;;

(* — New votes observer — x)

class NewVoters = when_new_proposal o (Proposal, ReplicaState) ;;
(# ———— Replica ——— %)

class Replica = NewVoters >>= Voter;;

(* ————— Main program —— %)

main Replica @ locs ;;

PRL team EventML January 24, 2012 13/16

EventML assertions

(* — state — =x)
class ReplicaState = Memory—class update_replica (init (0,nil)) Proposal
(* — invariants — x*)
invariant replica-inv on (max, missing) in ReplicaState
= max >= 0
/\ forall x : Int, int—list —member x missing => max > x /\ x > 0;;

Automated tactics prove many assertions automatically.

PRL team EventML January 24, 2012

14/16

Inductive logical form (ILF)

automatically generated, automatically proved

V[Cmd:ValueAllTypel . V[clients:bag(Id)]. V[cmdeq:EqDecider(Cmd)]. V[coeff,flrs:Z]. V[locs:bag(Id)].
Vles:E0’]. V[e:E]l. V[rcvr:Id]. V[num,rnd:Z]. V[c:Cmd]. V[sndr:Id].
(<rcvr, rsc4_vote’msg(Cmd;<<<num, rnd>, c¢>, sndr>)> € rscé4_Main(e)
<—> loc(e) € locs
A (rcvr € locs A (sndr = loc(e)))
A (Fe’:{e’:E| e’ <loc e }
((Jmax:Z
Jmissing:Z List
(<max, missing> € rsc4_ReplicaState(Cmd)(e’) A ((max < num) V (num € missing))))
A (Jc’:Cmd
((((e = e’) N (c=c’) A (rnd = 0))
V ((Fet:{el:E|l el <loc e }
(((3maxr:Z. (maxr € rsc4_NewRoundsState(Cmd) num(el) A (maxr < rnd)))
A (<<num, rnd>, c> € rsc4_retry’base(Cmd) (el)
V (Jdsndr’:Id. <<<num, rnd>, c>, sndr’> € rscd_vote’base(Cmd) (el1))))
A (e = el)))
A (no rsc4_Notify(Cmd;clients) num between e’ and e)))
A (<num, c’> € rscé_propose’base(Cmd) (e’)
V (3rnd’:Z. Jsndr’:Id. <<<num, rnd’>, c’>, sndr’> € rsc4_vote’base(Cmd)(e’))))))))

PRL team EventML January 24, 2012 15/16

Conclusion

The right abstractions, embedded in a language that can
interface with automated theorem provers gives us the ability
to synthesize code that provably satisfies high-level
specifications.

PRL team EventML January 24, 2012 16/16

