
Constructive Analysis and Experimental

Mathematics using the Nuprl Proof Assistant

Mark Bickford

March 2, 2016

1 Introduction

In 1967, Errett Bishop's �Foundations of Constructive Analysis�[1] demonstrated
that all of the real analysis normally taught in a �rst year calculus course (and
much, much more) could be developed using only constructive methods. The
methods used in this fundamental treatise inspired the development of auto-
mated proof assistants such as NuPrl and Coq. These proof assistants are now
powerful tools that can be used both to develop software that is �correct-by-
construction� and also carry out proofs in �pure mathematics� such as the Four
Color Theorem and the Feit-Thompson Theorem. These tools support construc-
tive, or intuitionistic, logic with a �proofs-as-programs� paradigm, in which there
is an isomorphism between proofs and programs. When used constructively, as
intended, these proof assistants will generate a program from a proof. In this
article we will present a variant of Bishop's construction of the real numbers
and discuss the programs that result from the construction.

To show that a constructive analysis is possible, Bishop was not concerned
with the e�ciency of the algorithms implicit in his proofs. Since our automated
proof assistant can generate and execute the algorithms that result from our
proofs, we try to make the algorithms e�cient. It is for this reason that we use
a variant of Bishop's construction. We also want to show how using a proof
assistant that can compute helps us discover e�cient algorithms when used
in an �experimental� mode. To illustrate this point, after presenting enough
of the basic structure of the real numbers, we will show how we discovered
constructions for the square root,

√
x, and general kth root, k

√
x, of a real

number, x, that compute with extreme e�ciency.

2 The Constructive Real Numbers

If x is a constructive real number, then, intuitively, there should be an algorithm
that computes x to a given accuracy 1

n . This means that for each n ∈ N we can
�nd a rational number qn such that qn − 1

n ≤ x ≤ qn + 1
n (in this article, we

will take N = {1, 2, 3 . . . }).

1

We use the symbol ÷ for integer division; it satis�es the division equation:
n = k(n÷ k) + (n rem k) (with |n rem k| < |k|). We can use integer division to
round o� a rational ab to round(k, ab) =

ka÷b
k , and then |ab − round(k, ab)| ≤

1
k .

Let q′n = round(2n, q2n), then |q′n−q2n| ≤ 1
2n , and since q2n−

1
2n ≤ x ≤ q2n+

1
2n ,

we have q′n − 1
n ≤ x ≤ q

′
n +

1
n . This shows that we can choose the denominator

of the nth approximation to be 2n.
Thus, a constructive real number, x, has the property that for each n ∈ N

we can �nd an integer xn for which xn

2n −
1
n ≤ x ≤ xn

2n + 1
n , or, equivalently,

xn − 2 ≤ 2nx ≤ xn + 2. From this property we deduce a regularity of the
sequence of integers x1, x2, x3, . . . Multiplying the inequalities for xn and xm by
m and n respectively, we get mxn − 2m ≤ 2mnx ≤ mxn +2m and nxm − 2n ≤
2mnx ≤ nxm + 2n. Thus, mxn − 2m ≤ nxm + 2n and nxm − 2n ≤ mxn + 2m,
so |mxn − nxm| ≤ 2(n+m).

De�nition 1. A sequence x1, x2, x3, . . . of integers is regular if for all n,m ∈
N, |mxn − nxm| ≤ 2(n + m). The sequence is k-regular if for all n,m ∈ N,
|mxn − nxm| ≤ 2k(n+m).

Our proof assistant speaks the language of type theory, so we will introduce
the elements of type theory we need as we go along. The �rst type we need
is the function type A → B. Members of this type are the functions f such
that f(a) ∈ B whenever a ∈ A. This might seem to be the usual set-theoretic
de�nition of a function with domain A and co-domain B, but in constructive
logic, every function f ∈ A→ B is an e�ective algorithm that computes output
f(a) from input a. Thus, to say that we have an algorithm that computes the
numbers x1, x2, x3, . . . is simply to say that λn.xn ∈ N→ Z.

The next type we need is the subset type {t : T | P (t)}. The members of
the type {t : T |P (t)} are the members of type T that satisfy the proposition P .
We will say more about what propositions in type theory are as we proceed,
but, for now, think of any de�nable property. Thus, to say that a (computable)
sequence x of integers is regular is to say that

x ∈ {x : N→ Z | ∀n,m : N.|mx(n)− nx(m)| ≤ 2(n+m)}.
We have argued that associated to every constructive real number is a com-

putable, regular sequence of integers. The principle of parsimony suggests that
this is what a constructive real is: a computable, regular sequence of integers.

De�nition 2. The constructive real numbers are the members of the type

R = {x : N→ Z | ∀n,m : N.|mx(n)− nx(m)| ≤ 2(n+m)}

From now on, we will use the word real to mean constructive real number.
So, a real x is a function that satis�es the regularity condition. We can think of

x(n) as the numerator of the nth approximation x(n)
2n of the real x, but, in fact,

we won't need to introduce the rational numbers at all. We will prove all the
properties of the reals using only integers and sequences of integers.

Bishop de�ned a real to be sequence of rational numbers q1, q2, q3 . . . such
that ∀n,m : N. |qn − qm| ≤ n−1 + m−1. Our de�nition of a real results from

2

Bishop's de�nition by normalizing the rationals qn to always have denominator
2n and then clearing the denominators in Bishop's regularity condition. This
allows us to de�ne the reals, without constructing the rational numbers, directly
from the integers and to de�ne all operations on reals using computations on
integers. Of course, computations on rationals also reduce to computations on
integers, but, after �rst implementing Bishop's original de�nitions (which were
not meant to be e�cient) we discovered that because they used arithmetic on ra-
tionals, they were unnecessarily exact. In our variant de�nitions each operation
on reals rounds o� the nth approximation so that it corresponds to a ratio-
nal approximation with denominator of 2n. This rounding avoids unnecessary
accuracy and turns out to make the algorithms more e�cient.

3 Equality in the Reals

Two di�erent regular sequences x and y can represent the same real number.

This happens when, for every n, the rational intervals
[
x(n)
2n −

1
n ,

x(n)
2n + 1

n

]
and[

y(n)
2n −

1
n ,

y(n)
2n + 1

n

]
overlap. Then, clearing denominators, the integer intervals

[x(n)− 2, x(n) + 2] and [y(n)− 2, y(n) + 2] overlap, equivalently,
∀n : N. |x(n)− y(n)| ≤ 4.

De�nition 3. Real numbers x and y are equal, (x req y), if and only if
∀n : N. |x(n)− y(n)| ≤ 4

We are going to write (x req y), as Bishop does, as x = y but this will give
us two meanings for the = symbol. The x = y in the type R means that x and
y are the same regular sequence, i.e. that for every n ∈ N, x(n) = y(n). This is
stronger than the equality condition in de�nition 3, which says that x(n) and
y(n) di�er by at most four. We could resolve the ambiguity by changing the
equality in the type R by quotienting with the relation req. However, because
there is no algorithm to decide whether (x req y) for arbitrary reals x and y,
and because there is no canonical member of an req- equivalence class, Bishop
strongly advises against this approach. Luckily, since we are using a proof
assistant, we can have two relations, req, and equality in type R, that will both
display as x = y but are syntactically distinct relations. Thus, in the proof
assistant, there is no ambiguity. In this article, we will clarify as needed, but,
as in Bishop's book, the default meaning for x = y will be the (x req y) de�ned
above.

The astute reader will now be puzzled because the relation, req, does not
seem to be a transitive relation, yet we are using the symbol = for it. However,
the relation req is an equivalence on R, a fact which follows from the regularity
condition.

De�nition 4. The relation bnddi�(x, y) ≡ ∃B : N.∀n : N. |x(n) − y(n)| ≤ B
says that the di�erence between x and y is bounded.

Lemma 5. For all x, y ∈ R, (x req y)⇐⇒ bnddi�(x, y)

3

Proof. If (x req y) then we may take B = 4. In the other direction, suppose
∀n : N. |x(n) − y(n)| ≤ B, then, for any n,m ∈ N, if 5 ≤ |x(n) − y(n)| then
5m ≤ m|x(n)−y(n)| ≤ |mx(n)−nx(m)|+ |nx(m)−ny(m)|+ |ny(m)−my(n)|,
by the triangle inequality. By regularity and our assumption, the right side is
≤ 4(n+m)+nB. Thus, 5m ≤ 4(n+m)+nB, so, m ≤ (4+B)n and we obtain
a contradiction when m = 1 + (4 + B)n. Hence, |x(n) − y(n)| ≤ 4. Note that
this proof by contradiction is constructive because, since |x(n)− y(n)| ∈ Z, we
can prove (5 ≤ |x(n)− y(n)|) ∨ (|x(n)− y(n)| ≤ 4).

Corollary 6. req is an equivalence relation on R

Proof. The bounded-di�erence relation, bnddi�(x, y) is clearly an equivalence
relation on integer sequences.

We will de�ne operations such as x+ y, x ∗ y, 1
x , and

√
x on regular integer

sequences x, y ∈ R, but in each case, we must prove the �functionality lemma�
that says that equal inputs give equal outputs. For example, the functionality
lemma for + states (where = is the req relation)

∀x1, x2, y1, y2 : R. (x1 = x2 ∧ y1 = y2) =⇒ (x1 + y1 = x2 + y2)

Because of Lemma 5, once we prove that x + y is regular, we only need to
prove that on equal (i.e. req) inputs, the outputs have a bounded di�erence.

We �rst note the straightforward injection of the integers into the reals.

De�nition 7. We write r(k) for the sequence λn. 2kn. It is the real number
corresponding to the integer k (because 2kn÷ 2n = k).

4 Adding Reals

How should x+y be de�ned? If x(n)2n is near x, and y(n)
2n is near y, then x(n)+y(n)

2n
is near x + y, so, perhaps, x + y should be the sequence λn. x(n) + y(n). The
problem is that, for regular x and y, |m(x(n) + y(n)) − n(x(m) + y(m))| ≤
|mx(n)−nx(m)|+ |my(n)−ny(m)| ≤ 4(n+m); so, the sequence λn. x(n)+y(n)
is 2-regular, but it may not be 1-regular. To get the correct 1-regular sequence,
we must �accelerate� the sequence.

De�nition 8. The sequence accel(k, x) = λn. x(2kn) ÷ 2k is called the k-
acceleration of sequence x.

Lemma 9. If sequence x is k-regular, then accel(k, x) is regular,
and bnddi�(accel(k, x), x).

4

Proof. Because x is k-regular, 2k|mx(2kn) − nx(2km)| ≤ 2k(2kn + 2km), so
|mx(2kn)− nx(2km)| ≤ (2kn+ 2km). Thus,

2k|m(x(2kn)÷ 2k)− n(x(2km)÷ 2k)|
= |m2k(x(2kn)÷ 2k)− n2k(x(2km)÷ 2k)|
≤ |mx(2kn)− nx(2km)|+m|x(2kn) rem 2k|+ n|x(2km) rem 2k|
≤ (2kn+ 2km) + 2k(n+m)

= 4k(n+m)

and hence, |m ∗ accel(k, x)(n)− n ∗ accel(k, x)(m)| ≤ 2(n+m), so accel(k, x) is
regular.

To show that the di�erence between accel(k, x) and x is bounded,

2kn|accel(k, x)(n)− x(n)|
= |n ∗ 2k ∗ x(2kn)÷ 2k − 2kn ∗ x(n)|
≤ |nx(2kn)− 2knx(n)|+ n|x(2kn) rem 2k|
≤ 2k(n+ 2kn) + 2kn

= 2kn(2 + 2k)

hence, |accel(k, x)(n) − x(n)| ≤ (2 + 2k), so we can take B = (2 + 2k) in the
de�nition of bnddi�(accel(k, x), x).

De�nition 10. The sum of a list of reals (of length k) is x1 + · · · + xk =
λn. accel(k, x1(n) + · · ·+ xk(n))

By the triangle inequality, the point-wise sum of k reals is a k-regular se-
quence, so by Lemma 9 its k-acceleration is a real. Thus, the algorithm for
the nth approximation of the sum of k reals is: compute the 2kn-th approx-
imation of each real, add them, divide by 2k. We observe a general pattern:
to get the required accuracy in the output, we need su�cient extra accuracy
from the inputs so that the �nal �rounding o�� is still correct. Note that the
nthapproximation of a+ b+ c+ d is

(a(8n) + b(8n) + c(8n) + d(8n))÷ 8

while the nth approximation of a + (b + (c + d)) (where we iterate the sum of
two reals, rather than adding all four at once) is

(a(4n) + ((b(8n) + ((c(16n) + d(16n))÷ 4)÷ 4))÷ 4

If we only iterate the binary sum, then when summing many reals (for example,
in the Taylor approximation of ex) we would ask for ever greater accuracy
from terms later in the list (and perform many divisions). Our de�nition of
the general sum of k reals avoids this ine�ciency, but we have to prove that
x1 + x2 · · ·+ xk = x1 + (x2 + · · ·+ xk). That fact is easy to prove (by induction
on k) because, by Lemma 5, we only have to prove that the two sums have a

5

bounded di�erence, and by Lemma 9, the accelerations used in the de�nition
preserve bounded di�erence. Thus, the equality reduces to the equality of the
point-wise sums, which is trivial. Commutativity and associativity of additions
then follow from the fact that our de�nition of the sum of a list is invariant
under permutation.

5 Multiplying Reals

How should z = x ∗ y be de�ned? We want z(n)
2n = x(n)

2n ∗
y(n)
2n = x(n)∗y(n)

2n∗2n , so
z(n) = (x(n) ∗ y(n)) ÷ 2n is the likely candidate. But, again, we will need to
accelerate this sequence to get a regular sequence. For multiplication, unlike
addition, the amount by which we must accelerate depends on the reals x and
y, in particular, it depends on bounds on the integers x(n) and y(n) for n ∈ N.

De�nition 11. A natural number b bounds a real x if ∀n : N. |x(n)| ≤ 2nb.
(Note that 2nb = r(b)(n).)

Lemma 12. The �canonical bound�, bound(x) = (|x(1)|+ 4)÷ 2 bounds real x.

Proof. This follows easily from the regularity of x.

We won't give the details, but the reader can check that z = λn. (x(n) ∗
y(n)) ÷ 2n is (2k + 1)-regular provided that k bounds both x and y. So if we
accelerate z by 2k + 1 we get a real number.

De�nition 13. The product of reals x and y, is the real number
x ∗ y = accel(2(max(bound(x),bound(y))) + 1, λn. (x(n) ∗ y(n))÷ 2n)

For each of the commutative, associative, and distributive laws for multipli-
cation, we have to prove that the di�erence between two expressions is bounded.
Using Lemma 9, we can ignore the accelerations. Using the division equation,
we can eliminate the integer divisions (by multiplying both sides by the divisor),
introducing extra error terms coming from the remainders. But the remainders
are bounded (by the size of the divisor), and the proofs go through easily. By
carrying out all these proofs using a proof assistant, we let the proof assistant
check all the details in these arguments, and we build up a library of lemmas
and proofs. We can reuse parts of the proof of one lemma in the proof of another
lemma. We automate reasoning steps that occur often, such as the use of the
triangle inequality, with programs, called �tactics�, that construct partial proofs
of goals that match certain patterns.

Some operations on reals are particularly simple because they don't require
any acceleration to generate a regular sequence. For reals x and y, the following
operations all de�ne real numbers:

De�nition 14. −x = λn. − (x(n)), min(x, y) = λn. min(x(n), y(n)),
max(x, y) = λn. max(x(n), y(n)), |x| = max(x,−x)

6

6 Ordering and Completeness

To �nish the construction of the real numbers we need to de�ne their order
structure, construct the multiplicative inverse x−1 = 1

x for non-zero x, and
show that every Cauchy sequence converges. If real x is less than real y then

for some n ∈ N, x(n)2n + 1
n <

y(n)
2n −

1
n , or, equivalently, x(n) + 4 < y(n). Also,

x ≤ y ⇔ ¬(y < x). This motivates the de�nitions:

De�nition 15. x < y ≡ ∃n : N. x(n) + 4 < y(n),
x ≤ y ≡ ∀n : N. x(n) ≤ y(n) + 4

Note that (x ≤ y ∧ y ≤ x) ⇒ x = y, but x ≤ y does not constructively
imply x < y ∨ x = y. That is because to prove the latter we must either prove
x < y or prove x = y, and knowing only x ≤ y does not tell us which case is
true. If we assume ¬(x < y), then x = y follows, but this proof by contradiction
is not constructive because there is no algorithm to decide x < y, so we may
not assume x < y ∨ ¬(x < y). Similarly, there is no algorithm to decide x = y,
so we may not assume x = y ∨ ¬(x = y). We therefore sometimes need the
following stronger evidence that reals are not equal.

De�nition 16. Reals x and y are separated (written x 6= y) if x < y ∨ (y < x)

If x ∈ {x : R | x 6= r(0)} then x is separated from zero, and this implies
that there is a k ∈ N such that 4 < |x(k)|. We de�ne nonzero(x) to be the
least such k; and we can �nd it by a search starting at k = 1 (unfortunately,
if x is separated from zero, but very small, this search can be slow). Let x =
λn. (x(n) if n < nonzero(x), 2 otherwise). This is a real equal (i.e req) to x but
for which x(n) is never zero. We use this to de�ne the inverse of x.

We want x−1(n)
2n = 2n

x(n) , so x
−1(n) should be 4n2 ÷ x(n), but we must not

divide by zero, so we use x(n) instead. To get a regular sequence, we must also
accelerate this sequence. It turns out that we can prove that accelerating by
4(4k2 + 1) works, where k = nonzero(x).

De�nition 17. The inverse of real x ∈ {x : R | x 6= r(0)} is
x−1 = accel(4(4nonzero(x)2 + 1), λn. 4n2 ÷ x(n))

We can prove that if x ∈ {x : R | x 6= r(0)} then x−1 ∈ R and x∗x−1 = r(1).
Because we need to search for nonzero(x), the algorithm for the inverse is the
least e�cient of the algorithms presented so far. It may be possible to �nd a
better construction for the inverse. This is also one place where the constructive
reals di�er from the �classical� reals. Classically, every non-zero real has an
inverse, but constructively, only the reals that are separated from zero have an
inverse.

When y 6= r(0), we de�ne x
y = x ∗ y−1. From these de�nitions we can prove

Lemma 18. For any real x and any n ∈ N, | r(x(n))r(2n) − x| ≤
r(1)
r(n)

7

This shows that what we have be using, informally, as motivation for our
de�nitions, is formally true. Note that our real numbers contain the rational

numbers in the form r(a)
r(b) (when b 6= 0), and we can prove all the usual rules for

rational arithmetic.
A sequence of real numbers is a member of the type N → R. We will use

capital letters X,Y ,. . . for sequences of reals, so X,Y ∈ N → R. Now we
can de�ne when a sequence X is a Cauchy sequence and when a sequence X
converges to a real number x.

De�nition 19. A sequence X of reals is Cauchy if
∀k : N. ∃N : N. ∀n,m : N. (N ≤ n ∧ N ≤ m)⇒ |X(n)−X(m)| ≤ r(k)−1.
Sequence X converges to real x (written limn→∞X(n) = x) if
∀k : N. ∃N : N. ∀n : N. (N ≤ n)⇒ |X(n)− x| ≤ r(k)−1.
Sequence X converges (X ↓) if ∃x : R. limn→∞X(n) = x.

Theorem 20. (Completeness) (X ↓)⇔ (X is Cauchy)

We won't give the proof of Theorem 20. Our proof comes from the proof
in Bishop and Bridges[2] by �clearing denominators�. Instead, we will discuss
what the type-theoretic meaning of this theorem is and show the program that
NuPrl generates from the proof of this theorem.

6.1 Some type theory

Suppose that for every a ∈ A, B(a) is a type. Then we call B a family of
types, indexed by type A. For any such family, we have the dependent function
type a : A → B(a) and the dependent pair type a : A × B(a). A member f
of a : A → B(a) is a function such that f(a) ∈ B(a) whenever a ∈ A, and a
member 〈a, b〉 of a : A × B(a) is a pair with �rst component a ∈ A and second
component b ∈ B(a).

A constructive proof p of a statement ∀a : A. P (a) constructs, for each a ∈ A,
evidence that P (a) is true. If we identify P (a) with the type of evidence for
P (a), then the construction can be seen as a function p, de�ned for a ∈ A, such
that p(a) ∈ P (a). This is the same as saying p ∈ a : A→ P (a). A constructive
proof of ∃a : A. P (a) must construct a witness a ∈ A and evidence, b ∈ P (a),
that P (a) is true. This is the same as saying that 〈a, b〉 ∈ a : A× P (a).

We use the type Unit, which has only one member Ax, as the evidence for
simple, checkable, true propositions about numbers, such as 3 < 7, or 5 = 5. The
type Void, which has no members, is the evidence type for false propositions.

The logic of proof assistants like NuPrl and Coq is based on this �propositions
as types� isomorphism:

8

A ∧ B ←→ A×B
A⇒ B ←→ (A→ B)

A ∨ B ←→ A+B

∀a : A. B(a) ←→ a : A→ B(a)

∃a : A. B(a) ←→ a : A×B(a)

n = m ←→ Unit, if n=m, Void, otherwise

n < m ←→ Unit, if n <m, Void, otherwise

False ←→ Void

6.2 Constructive content of Completeness

The proposition (X ↓) ⇔ (X is Cauchy) is an i� statement of the form A ⇔
B ≡ (A ⇒ B) ∧ (B ⇒ A). So the evidence will be a pair of functions 〈f, g〉
where f ∈ (X ↓) ⇒ (X is Cauchy) and g ∈ (X is Cauchy) ⇒ (X ↓). The
proposition (X is Cauchy) is ∀k : N. ∃N : N. ∀n,m : N. (N ≤ n ∧ N ≤ m) ⇒
|X(n) − X(m)| ≤ r(k)−1, which has the form ∀k : N. ∃N : N. R(k,N). The
relation R(k,N) is ∀n,m : N. (N ≤ n ∧ N ≤ m) ⇒ |X(n)−X(m)| ≤ r(k)−1,
which, by unfolding the de�nition of ≤, is

∀n,m : N. (N ≤ n ∧ N ≤ m)⇒ ∀n′ : N. |X(n)−X(m)|(n′) ≤ r(k)−1(n′) + 4

A member of this type would have to be λn.λm.λp.λn′. Ax, because the in-
ner proposition is a relation on numbers. We say that propositions like this
have trivial constructive content. Thus, the non-trivial constructive content of
(X is Cauchy) is the evidence for ∀k : N. ∃N : N. R(k,N), and this is a func-
tion, cauchyX ∈ N → N. It is the Skolem function such that for k ∈ N,
R(k, cauchyX(k)). Thus, cauchyX(k) is that N past which the reals in the
sequence X are pairwise within 1

k of each other. This function is called the
modulus of Cauchy convergence.

Similarly, the constructive content of limn→∞X(n) = x is a function cX,x
of type N → N, the �modulus of convergence� that is the Skolem function for
∀k : N. ∃N : N. ∀n : N. (N ≤ n) ⇒ |X(n) − x| ≤ r(k)−1. Evidence for X ↓ is a
pair 〈x, cX,x〉, the real x that X converges to, and the modulus of convergence.

When we stated and proved completeness in NuPrl, we used an alternate
form for the existential quanti�er. Instead of a : A×B(a), we can use the type
{a : A | B(a)}. Evidence for this alternate form is just an a ∈ A for which B(a)
is true�but the evidence for B(a) is not provided. This form can be used when
B(a) has trivial constructive content.

Thus, the evidence (i.e. the program) for completeness will be 〈f, g〉 where
f takes an input 〈x, cX,x〉 and produces cauchyX and g takes input cauchyX
and produces 〈x, cX,x〉.

When we ask Nuprl for the evidence for completeness generated from the

9

proof we get λX. 〈f, g〉 where

f = λp. let x, c = p in λk. c(2k)

g = λcy. 〈accel(2, λn. X(cy(n))(n)), λk. cy(4k) + 1〉〉
We see from the �rst function f that given the modulus of convergence c, the

modulus of Cauchy convergence is λk. c(2k) (independent of the x that X con-
verges to). The second function g shows that from X and its modulus of Cauchy
convergence, cy, we construct the real that X converges to by accelerating (by
two) the �diagonal� sequence λn. X(cy(n))(n). The modulus of convergence is
λk. cy(4k) + 1. (The factors of 2 and 4 that occur in the evidence, come from
� ε2 - arguments� used in the proof.)

To construct a real number we often build a sequence of reals X that ap-
proximates any real with the desired properties, then prove that X is a Cauchy
sequence, which therefore converges to a real r. We can then derive the prop-
erties of real r from the approximations in X. This method is used to prove
Cantor's theorem (that in any non-trivial interval there are uncountably many
reals), and (a version of) the intermediate value theorem. Because we can al-
ways generate the constructive content of these proofs, we can compute with all
the real numbers we construct.

We have formalized almost all of the material in chapter two of Bishop and
Brigdes, convergence tests for series, continuity, derivatives, the chain rule and
product rule, Rolle's Theorem, Taylor's theorem, the sine, cosine, and expo-
nential functions, and the Riemann integral. Rather than present more of this
material (for which we encourage the interested reader to consult the original
text of Bishop and Bridges[2]) we turn next to a discussion of how using a proof
assistant gives us the ability to do �experimental mathematics�.

7 Constructing roots

There are several ways to construct the square root of a real number b. We
can use the intermediate value theorem on the polynomial x2 − b, or we can
use Newton's method,

√
b = limn→∞an where a1 = b and 2an+1 = an + b

an
.

Neither of these methods produces a very e�cient algorithm in general because
both methods iterate computations on reals. We wanted to give an e�cient
construction of the square root operation, and more generally, the k-th root (for
k ∈ {2, 3, . . . }). The algorithms for addition and multiplication of reals are not
iterative; they reduce directly to computations on integers. Could there be a
similar algorithm for square root?

The �rst response is �no� because there is no square root function de�ned on
the integers. But, although most integers do not have exact square roots, they
do have approximate square roots�and these can be computed e�ciently.

De�nition 21. For k ∈ {2, 3, . . . } and non-negative integers z and r, we say
that r is the integer kth root of z (and write r = iroot(k, z)) if

rk ≤ z < (r + 1)k

10

7.1 Fast Integer roots

Every non-negative integer has an integer kth root. The program generated
from the following proof (by Christoph Kreitz) of this fact is very e�cient.

Lemma 22. ∀k : {k : Z | 2 ≤ k} . ∀z : N. ∃r : N. rk ≤ z < (r + 1)k

(in this lemma N = {n : Z | 0 ≤ n})

Proof. We use complete induction on z, so we assume that every z′ < z has an
integer kth root. If z = 0 then we take r = 0. Otherwise, let z′ = z ÷ 2k, then
z′ < z so there is an s such that sk ≤ z′ < (s+ 1)k. Let x = 2s and y = 2s+ 1.
It is easy to check that if yk ≤ z then y is the integer kth root of z and otherwise
x is the integer kth root.

The program generated from this proof is

λk. let b := 2k in

letrec f(i) = if i = 0 then 0

else let i′ := i÷ b in
let x := 2f(i′) in

let y := x+ 1 in

if yk ≤ i then y else x

in λz. f(z)

The recursion in this program comes from the induction used in the proof,
and all the other steps were explicit in the proof. This program runs in time

proportional to
log2(z)

k so it is very fast. With k = 2 and z = 2∗1040 it computes
to 141421356237309504880 in 1703 primitive computation steps.

7.2 A simple k-th root program

If k is even, then we can only construct a kth root for real x when r(0) ≤ x. So,
we will �rst construct z = k

√
|x| for any real x and any k ∈ {2, 3, . . . }. What

should the nth approximation z(n) be? We want (z(n))k

(2n)k
≈ |x| ≈ |x(nk)|

2nk , so

(z(n))k ≈ 2k−1|x(nk)|. This suggests that the following simple program might
construct k

√
|x|

simpleroot(k, x) = λn. iroot(k, 2k−1|x(nk)|) =?
k
√
|x|

If this construction is correct, then simpleroot(k, x) is a regular sequence,
whenever x is regular. If not, then maybe simpleroot(k, x) is a K-regular se-
quence for some K = K(k, x) in which case the correct program is

accel(K, simpleroot(k, x))

Our �rst attempts to prove that simpleroot(k, x) was regular or K-regular were
unsuccessful so we reluctantly gave up on this construction and, instead, con-
structed the root as the limit of a Cauchy sequence.

11

near-root(k;p;q;n) ==

if q=1

then if n=1

then eval c = 2�k - 1 in

eval a = p * 2 * c in

eval d = (2 * c) - 1 in

eval M = iroot(k;|a| + d) + 1 in

eval y = ((k * 2 * M�k - 1) ÷ d) + 1 in

eval x = iroot(k;(|a| + d) * y�k) ÷ 2 in

<if (p) < (0) then -x else x, y>

else eval b = q * n in

eval c = b�k - 1 in

eval a = p * n * c in

eval d = c - 1 in

eval M = iroot(k;|a| + d) + 1 in

eval y = ((k * b * M�k - 1) ÷ d) + 1 in

eval x = iroot(k;(|a| + d) * y�k) ÷ b in

<if (p) < (0) then -x else x, y>

else eval b = q * n in

eval c = b�k - 1 in

eval a = p * n * c in

eval d = c - 1 in

eval M = iroot(k;|a| + d) + 1 in

eval y = ((k * b * M�k - 1) ÷ d) + 1 in

eval x = iroot(k;(|a| + d) * y�k) ÷ b in

<if (p) < (0) then -x else x, y>

Figure 1: Program generated from proof that near roots exists

7.3 k-th root program generated from a proof

We used the existence of the integer kth root to prove the existence of a near
kth root of a rational number. So, we proved that for any p ∈ Z and any

q, n ∈ N there exists integers a and b such that |(r(a)r(b))
k− r(p)

r(q) | <
1
n . We call the

program generated from this lemma nearroot(k, p, q, n). It is shown in �gure 1.
We used the near roots to prove that there is a sequence of (rational) numbers
Q ∈ N→ R such that limn→∞Q(n)k = x. Then we proved (Q is Cauchy). From
this we deduce that ∃z : R. limn→∞Q = z, and using the properties of limits,
that zk = x and hence z = k

√
x (when k is even, we assumed r(0) ≤ x and

showed r(0) ≤ z). We call the program generated from this proof genroot(k, x).
It is shown in �gure 2.

7.4 Experimental math

To compute (say) 50 decimal digits of a real number x, we let n = 5 ∗ 1049 and
compute x(n). Because 2n = 1050, |x(n)−r(1050)∗x| ≤ r(1), so the last digit of
x(n) may be o� by one. The e�ciency of genroot(k, x) was reasonably good. To

12

λi,x. eval x1 = x in

λn.eval m = 4*n in

eval p = x1(2*(((2*m�i)-1)+1)) in

if (p*2*(((2*m�i)-1)+1)) < ((-1)*4*(((2*m�i)-1)+1))

then if (1*4*(((2*m�i)-1)+1))<(p*2*(((2*m�i)-1)+1))

then eval r=near-root(i;p;4*(((2*m�i)-1)+1);

2 *(((2*m�i)-1)+1)) inlet r1,r2=r

in eval k=r2 in

if (k)<(0)

then (-((2*(2*m)*r1)÷(-2)*k))÷4

else ((2*(2*m)*r1)÷2*k÷4)

else eval r=near-root(i;p;4*(((2*m�i)-1)+1);

2 *(((2*m�i)-1)+1)) inlet r1,r2=r

in eval k=r2 in

if (k)<(0)

then (-((2*(2*m)*r1)÷(-2)*k))÷4

else ((2*(2*m)*r1)÷2*k÷4)

else if (1*4*(((2*m�i)-1)+1))<(p*2*(((2*m�i)-1)+1))

then eval r=near-root(i;p;4*(((2*m�i)-1)+1);

2 *(((2*m�i)-1)+1)) inlet r1,r2=r

in eval k=r2 in

if (k)<(0)

then (-((2*(2*m)*r1)÷(-2)*k))÷4

else ((2*(2*m)*r1)÷2*k÷4)

else ((2*m*0)÷4)

Figure 2: Program generated from proof that k-th root exists

13

compute 50 decimal digits of the 12th root of r(2) took about 530,000 primitive
computation steps1. However, the same computation using simpleroot(12, r(2))
used only about 7,000 primitive computation steps (two orders of magnitude
fewer) and gave the same result! We know that genroot(k, x) is a provably
correct construction of k

√
x, but maybe the program simpleroot(k, x) always

computes the same real as genroot(k, |x|)?
We could test this hypothesis experimentally by computation inside the proof

assistant. For various choices of k (odd and even) and various choices of x
(large and small), we searched for the �rst n for which the result of the two
programs, genroot(k, |x|)(n) and simpleroot(k, x)(n), di�er by more than one (if
they never di�er by more than four, then they compute the same real number).
We observed them di�er by one in some cases, but never by more than one!

The result of this experiment gave us con�dence that the simple root con-
struction was correct after all. Previous attempts to prove it correct were ham-
pered by not knowing that it was correct. When several inequalities that would
have su�ced to prove the regularity of the sequence turned out to be unprov-
able, we gave up because we concluded that the sequence might not be regular.
Since our experiments now showed that that was unlikely, we were encouraged
to �nd the proof that it is regular.

7.5 Proof of simple root construction

We have to show that if x is a real number (i.e. a regular sequence) then
z = simpleroot(k, x) is a real number, and we have to show that zk = |x|.

To show that z is regular we must show:

|m ∗ iroot(k, 2k−1|x(nk)|)− n ∗ iroot(k, 2k−1|x(mk)|)| ≤ 2(n+m)

Let s = 2k−1, i = nk, j = mk, c = j ∗ s ∗ |x(i)|, and d = i ∗ s ∗ |x(j)|. Let
a = m ∗ iroot(k, s ∗ |x(i)|) and b = n ∗ iroot(k, s ∗ |x(j)|). Then we must prove
|a− b| ≤ 2(n+m). Since

iroot(k, s ∗ |x(i)|)k ≤ s ∗ |x(i)| < (iroot(k, s ∗ |x(i)|+ 1)k

we have, multiplying by j = mk,

ak ≤ j ∗ s ∗ |x(i)| < (a+m)k

So, ak ≤ c < (a+m)k, and similarly, bk ≤ d < (b+n)k. By the regularity of |x|
we have |c − d| ≤ 2s(i + j). By symmetry, we may assume a ≤ b. Then either
|a − b| ≤ 2(n +m) (in which case we are done) or (2n +m) + (a +m) < b. In
the latter case, ((2n+m) + (a+m))k < bk ≤ d, so

((2n+m) + (a+m))k − c ≤ d− c ≤ |d− c| ≤ 2k(i+ j)

1Inside NuPrl, the programs are interpreted (rather than compiled) and this computation
takes about 30 seconds.

14

Now, if a = 0, then also c = 0, and therefore

2k(i+ j) ≤ 2k(n+m)k < bk ≤ d = |c− d| ≤ 2k(i+ j)

which is impossible. Hence, a 6= 0, and this implies thatm ≤ a, so 2m ≤ (a+m).
The last term in the binomial expansion of ((2n +m) + (a +m))k is (a +m)k

which is greater than c, and all the other terms are ≥ the corresponding term
in the binomial expansion of ((2n+m) + 2m)k. Thus,

(2n+ 3m)k − (2m)k ≤ ((2n+m) + (a+m))k − c ≤ 2k(i+ j) = (2n)k + (2m)k

Then
(2n)k + (3m)k ≤ (2n+ 3m)k ≤ (2n)k + 2(2m)k

so, (3m)k ≤ 2(2m)k, which implies 3k ≤ 2k+1, and it is easy to prove that this is
false when k ≥ 2; so we have shown that z = simpleroot(k, x) is a real number.

To show that zk = |x| we only have to show bnddi�(zk, |x|). With some
work, it follows from the de�nition of multiplication that it is enough to �nd a
bound B such that, for all n ∈ N,

|(z(n))k ÷ (2n)k−1 − |x(n)|| ≤ B

As above, set s = 2k−1 and i = nk; and, in addition, set u = |x(i)|, v = |x(n)|,
and R = z(n) = iroot(k, s ∗ u). Then

s ∗ i ∗ |Rk ÷ (2n)k−1 − v| =

|n ∗ (Rk − (Rk rem (2n)k−1))− s ∗ i ∗ v| ≤
|nRk − snu|+ |snu− siv|+ n|Rk rem (2n)k−1| ≤

n|Rk − su|+ 2s(i+ n) + si ≤
n((R+ 1)k −Rk) + 5si ≤
n ∗ k ∗ (R+ 1)k−1 + 5si ≤
n ∗ k ∗ (2R)k−1 + 5si ≤

si ∗ k ∗ (2*bound(z))k−1 + 5si

Thus, |Rk ÷ (2n)k−1 − v| ≤ k ∗ (2*bound(z))k−1 + 5, so we can choose
B = k ∗ (2*bound(z))k−1 + 5.

That completes the proof that simpleroot(k, x) = k
√
|x|. We extended this

construction to get k
√
x (i.e. to handle x, rather than |x| when k is odd) but

we won't give the details here. While the proof just given is completely ele-
mentary, it is a bit tricky, which explains why we missed it initially. Because
our experimental results convinced us that the result was true, we were able
to work harder and �nd the proof. Our proof assistant does not automatically
�nd proofs like this, but it does automatically verify some of the arithmetic
reasoning. And, it checks all the details and does not allow us to leave out any
cases.

15

References

[1] E. Bishop. Foundations of Constructive Analysis. McGraw Hill, NY, 1967.

[2] E. Bishop and D. Bridges. Constructive Analysis. Springer, New York, 1985.

16

	Introduction
	The Constructive Real Numbers
	Equality in the Reals
	Adding Reals
	Multiplying Reals
	Ordering and Completeness
	Some type theory
	Constructive content of Completeness

	Constructing roots
	Fast Integer roots
	A simple k-th root program
	k-th root program generated from a proof
	Experimental math
	Proof of simple root construction

