Assigning Meaning to Proofs: a semantic basis for

problem solving environments

Robert L. Constable”
Cornell University

Tthaca, NY 14853

Abstract

According to Tarski's semantics, the denotation of a sentence in the classical predicale
calculus with respect to a model is its truth value in that model. In this paper we associate with
every sentence a set comprising evidence for it and show that a statement is true in a model
exacily when there is evidence for it. According to this semantics, the denotation of a sentence
is this set of evidence.

Proofs are regarded as expressions which denote evidence. Assigning this meaning to prools
gives them the same status as other algebraic expressions, such as polynemials. There are
laws governing equality and simplification of proofs which can be used to explain the notion
of constractive validity. A proof is called constructive when the evidence it denotes can be
computed from it. A sentence is constructively valid when it has a constructive proof. These
proofs turn oul to he practical ways to present algorithms as has been demonstrated by an

implementation of them in the Nupzl proof development system.

*This research was supported in part by NSF grants MCS-81-04018 and (joint Cornell-Edinburgh) MCS-83-03336.

MNATO ASI Series, Vol. F 53

Constructive Methods in Computing Science
Edited by M. Broy

© Springer-Verlag Berlin Heidelberg 1989

64

1 Introduction

If T correctly stated the winning lottery number before it has been publicly announced, many people
will be more interested in my evidence for the assertation than in its fruth. Even for routine
utterances we are interested in the evidence. “How do you know?” we ask. In formal fogic the
“truth” of a sentence can be defined following Tarski [Tar44] who put the matter thiz way for
the case of a universal statement: Yz.B(z) is true in a model m if the model assigns to B some
propositional function m{B) which has value true for every element of the universe of disconrse I?
of the model. That definition ignores evidence. We want to give a precise definition of evidence and

relate it to truth as defined by Tarski,

Fo mathematios there is a persistent inlerest in evidence even thougl the official definition of
bradh s nat pefer to it S ifF elajm that there 1= a regular 17-gon, then you may wish to see one,
The ancient Grecks would reguive that [ronstrief aue or in some way actually exhibic it. As another
setoresting egimngde, suppee that | olaim that there are two irrational numbers, say # aud . such
that 5% b earionnl, T udght prove that they exist this way, Consider /37, 36 is either rational or
ireationnl, TP b rativaad, take 2 = /2,0y = 20 110t s derational, take » = 27 and vo= /2
gt ;:ﬁ Ve st Wt , . \ .

Then ¥ = {/9 Y= 27 =2 S0 in either case there are the desired £,y Bui nolice thal the
evidence for existence here is indirect, T have not actually exhibited & by this method, even though
you might be convinced that the statement is true in Tarski’s sense. A constructive proof of this
statement would actually exhibit # and y, say for example = /Z and y = 2. log, 3 are irrational

plus the computation 262108, 3)/3 = 3,

We begin to understand how the concept of evidence is defined if we examine its use in ordinary
discourse. Existence statements like those above are especially significant. Evidence for there is

an x such that B halds, symbolized 3z B{z), consists of an element a and evidence for B holding

65

on a. Consider now evidence for a universal statement such as for every natural number x there is
a pair of prime numbers, p,p+ 2 greater than z. Given B, the evidence could be 2, 3 and given 2 it
could be 5, 7, ete. But what is evidence for the universal statement? It should include in some way
these instances, so it could be a function f which given a number n produces f{n} as evidence lor

the assertion, e.g. f(n) could be a pair p,p+ 2 and proof that p is greater than n.

Consider next evidence for a conjunction such as n is odd and n is perfect. We would expect
to have evidence for both statements, say a pair containing {(or comprising) a factorization of n as
2m+ 1 and a summation of all of the factors in n.' Evidence for a disjuntion such as A or B will he
either evidence for 4 or evidence for B. We also imagine that we could tell which case the evidence

applied to.

Consider this implication: if there is a polynomial time algorithm to decide whether an arbitrary
hoolean expression is satisfiable, then there is an algorithm to determine whether a finite graph hag
& clique of any given size. This is a typical statement in modern computational complexity theory.
The truth value of the antecedent is not known, yet the implication is true. It is true because we
have a method to transform any (hypothetical) algorithm for satisfiability into cne for clique. T is
this method which bears witness for the implication. A more mundane example is this. When | say
“If there is a 6 in the array A, then there is a 6 in the array B obtained from A by replacing cach
odd value and only odd values by 5;” you can recognize this as a true implication becausc you know
a method of taking evidence for “6 is in A”, say an index i and the value A[i] = 6, to evidence that

“§ is in B,” the same index ¢ and B[i] = 6 will suffice for instance.

What is evidence for a negation such as “4 is not prime.” First, notice that I mean “it is nol,
the case that 4 is prime” rather than taking “not prime” as a separate predicate meaning 4 is

composite. So in general we are looking at a uniform negation, — A. This is sometimes equivalent 1o

! A perfect number is one which is equal to the sum of its proper factors, eg. 6 =34+ 24 1,

66

some positive statement, such as “4 Is composite.” But if we do not know anything aboui A other
than that it is a proposition, then we cannot hope to reformulate it positively; so we ask whether we
can say anything about negation uniformly in A. Intuitively it seems sensible to say Lhal evidence
for = A is evidence that there is no evidence for A. So the question then is “how do we show Lhat

sets are empty?” We cannot do this by producing an element.

One way to show that a set, say described by term A, is empty is to show it as a subset of the
canonical empty set, say ¢, i.e. AC¢. This amounts to showing an implication , if 2cA then zeg.
One formula whose evidence set is clearly empty is false; that is the definition of the formula false,
one with ne proofs. So one way of proving —F uniformly is to prove F = false. This is not the
only way, but it is sufficient. We might for example prove that F = & and =& holds. But also,
if we know —F, then we know that the evidence set for F is empty, so it is a subset of ¢ and so
(F = false). Thus we can take F' = false as the definition of a general negation; we adopt this

definiton.

These explanations may not be definitive, but they provide a good starting point. In the next
section we define a particular specimen of formatl logic and give a precise definition of both truth

and evidence. Then in section 3 we examine proofs and show how they encode evidence.

This interpretaion of evidence is not new, its origins go back at least to L.E.J. Brouwer who
discovered in the early 1900°s that to treat mathematics in a constructive or computational way, one
must also treat logic in such a manner. He showed that this could be done by basing logic on the
Judgement that a sentence is known to be true from evidence rather than on the judgement that it
is true. At this point in the discussion, we are not concerned with computable evidence exclusively,
but with an abstract notion of evidence. Tn some sense we are extending Brouwer’s ideas to classical
logics as well. Later we will make connection to constructive logic via the so-called propesilions-
as-Iypes principle due to Curry, Howard, and de Bruijn (for references see [CAB*86,de380]). This

principle can be seen as formalizing the notion of evidence in type theory, see also [ML84], [CAB+86].

NIRRT 3

87

2 The Logic

Synlax

We present a standard kind of predicate caleulus. The formulas of our logic are built using the bi-
nary propositional connectives &, |, -, => (and, or, not, implics) and the guantifiers V&, 3z (all and some)
where z ranges over the class of objects called individual variebles. There must be at least one propo-
sitional funclion constant, there may be several but only a finite number of them (for simplicity},
say Py, P, ..., P.. There may also be ordinary function constanis, say fi, fz,..., fm. With cach
propositional or ordinary function constant we specify the number of arguments it iakes; Lhis is
called its arity. The arity can be zero. The language will have terms, these include (individual)
variables written 2y,%g,...,-... If there are ordinary function constants, then the terms include
expressions of the form fi(t1,...,1s) where the €; § = 1,...,n ate ferms and the f; has arity . If

the arity of f; is zero, then f; is also an individual constant.

A formula of the logic is defined as follows:

(1) false is a formula (it is a propesitional constant)

(ii) if ¥4 is a propositional function of arity n, and #y,...,4, are terms, then Fi(t1.....1n) s a

formula

(iii) if A and B are formulas, then so are
(A& B)
(4] B)
{A = B)

S B e U PG . . — e e SR A T s 1 et

&8

(iv) if B is a formula, then so are

(3z.B} and (Vz.B).

A particular instance of this language that is quite familiar arises by taking 0 and 1 as individnal
constants {arity zero ordinary functions}), taking 4+ and * as ordinary function constants, {writing
+(1,2) for 1+2) and = and < as propositional functions of arity 2 so that = (z, y) and < {z +(x, 1))
stand for # = y and = < (z + 1). In the remaining examples we will write these familiar functions
in their usual infix manner taking them as abbreviations for the “official” form. Formulas in (i) and
(ii} are atomic. Those in (iii) are compound with principle operator &, |, or = (in that order). Those

in (iv) are quantified formulas, and their principle operators, are Vz or Jz.

The quantifiers Yz, 3z are called binding operators because they bind occurrences of the variable
z in the formulas to which they are applied. In ¥z.B and in 32.8, the formula part B is called the
scope of the quantifier. Any occurrence of z in B is bound. It is bound by the guantifier of smallest

scope that causes it to be bound.

A variable occurrence in a formula F which is not bound is said to be free. If z is a free vasjable
of F, and ¢ is a term, we write F({/2) to denote the formula that results by substituting { for all free
occurrences of x and renaming bound variables of I as necessary to prevent capiure of free variables
of £. Thus if t contains a free variable y and z occurs in the scope of a subformula whose quantifier
binds y, say Jp.C, then the quantifier is rewritten with a new variable, say 3y'.C because otherwise
y would be captured by 3y.A. For example, in the formula Jy.z < y the variable x is free. 1f we
substitute the term {y + 1) for = we do not obtain Jy.{y + 1) < y but instead Iy’ .{y + 1) < . Seo

[Kle52,ML82,ML84] for a thorough discussion of these points.

A formula with no free variables is called elesed. A closed formula is called a sentence.

2

69

If for convenience we want to avoid writing all of the parentheses, then we adopt the convention

that all the binary operators are right associative with the precedence &, |, = and then quantifiers.

Thus Vz.B(2)&C = Jy.P(z,y) | B(y) abbreviates (Vz.({B(z)&C) = (Jy.(P(z,v) | B(y}))))-
Semantics of Truth

The meaning of a formula is given with respect to a model which consists of a set D), called
the domain of discourse, and a function m called interpretation which maps each ordinary function
constant f of arity n to a function from D" into D denoted m(f) and maps each proposilional

function constant P of arity n to a function from D® into {T, F'} denoted m(P).

To give the meaning of formulas with free variables z; we need the idea of a state which is a

mapping of variables to values, that is s(z;) belongs to D. When we want to alter a state at a

variable z; we write s{z; := a] which denotes s{y) if ¥ # #: and denotes a if y = z;. We define the

relation that formula F is true in model m and state s, written

mE, Fu

Preliminary to this concept we need to define the meaning of a term in state s, written m{t)(s).
The meaning of constants is given by m, sa m(¢; }{s) = m({c;). The meaning of variables is given 5, so

m(z:)(5) = s(2;). The meaningof f(t1,...,tn) s m{f{t1,...,ta))(s) = m(f)(m(1)(s), ... mit,)(s)).

70

Truth Conditions

1. m}:x, P(il,...,in)
iff m(P)(s}n(ts)(sh ..., n(als)) =T

for P a propositional function constant of arity n.

o=

. m |, (ALR)
iffmpE, Aandm =, B
3. mf=y (4] B)
iffmbE, Aormp=, B
4. mf=, (A= B)
iff ms Aimplies m =, B
5 m =, Vz.B

iff mbks, B for all & = s[z :=a] with e in D

6. m =, Jx.B

iff mpzy B for some & = s[z:i=¢]forain D

Semantics of Evidence

The following set constructors are needed in the semantics of evidence. Given sets A and B, let
A % B denote their cartesian product, let A + B denote their disjoint union, and let A — B denote

all the functions from 4 to B. Given B(z) a family of sets indexed by A, let

HEB(z)
zeAd

71
denote the set of functions f from A inte,

UB(x)
reA

such that f(a) belongs to B(a). We also take

2 B(z)
reA

to be the disjoint union of the family of sets. It can be defined as {< a,b >{ acA, beB(a}}.

Now we define m[A){s), the evidence for formula A in model m and state s

1. m[false](s} = the empty set

2. m{Pty,- .)8 = {T}if m =, Plry,.. e Ta)

emply otherwise for P a propositional function constant.
3. m{A&B](s) = m[A](s) x m[B}(s)
4. m{A | B(s) = m{4)(s) + m[B](s)
5. m[A = B](s) = m[4](s) — m[B](s)

6. m[Vz.B)(s) = Im[B](s[z =y)
yel?
7. m[3z.B] = {< a,b | ae D&bem|[B](s[z := a])} = 3_m[B]{s[z := y})
yel)

So we have defined inductively on the structure of a formula A a coliection of objects thal

constitute the evidence for A in a particular model m. In the base case, 1, the definition relies on

72

the semantics of truth, Here is an example of evidence: < 6,7 > belongs to m{3y.5 < yi(s). We
need to know that 5 < 6 is true so that T belongs to m[5 < 6](s). Truth and evidence are related

in this simple way.

Theorem 1 For every sentence B, model m and stale s

m =, Biff there is b ¢ m[B](s).

proof

The proof is accomplished by induction on the structure of B showing both directions of the
biconditional at each step. The easiest direction at each step is showing that if bera|B](s}, then
m =, B. We do these steps first, but the induction assumption at each step is the stalement of the
theorem for subformulas of B. To determine the subterms we proceed by case analysis on the outer

operator of B, (We drop the state when it is nol needed.)

1. If B is atomic, then the result is immediate.

(1) B is B1&B;
Then b ¢ m[B1&B:] so b is a pair, say, < b1, b2 > and bie m[By] and by m[B). By
induction then, m = By and m = By som | B & B,.

{(2) Bis By | B,
Given b ¢ m([B; | Ba) = m[Bi] + [Ba], it must be in one disjunct or the ather. That
disjunct will be true by the induction hypothesis, so the whole disjunction is true.

{3) Bis By = By
Given fe m[B; => B,], we consider two cases. Either m[H] is empty or there is same
bie m[B;]. In the later case f(b1)e m[B;] so By is true and so is By = By, If m{B] is

empty, then by the hypothesis By is false. So B; = 83 is true.

73

(4) Bis Vz.B;

Given
fe I m{B)(s[r := v])
nel)
then for any acD, fla)e m{B;)(s[zr := c]). So B is true for all elements of 1. Thus V.3
is true.
(5) Bis 3.5
Given cin {< a,b >| a eD&b e m[By](s{x := a]}} we have that B, is true on a. So B is

true.

2. Now we must show that if B is true in model m and state s, then there is evidence for m[B}{s).
Again we proceed by induction on the structure of B. Clearly B cannot be false, and the resnlt

is immediate for other atomic B.

(1) B is Bl&Bg
Both B; and B; must be true if B is. So by the induction hypothesis Lhere are

bie m[By], bze m{B,]. By definition <« b1, by > ¢ m[B & By}

(2) Bis Blle

Either B; or Bj is true. In either case, by induction there is an element of m[B4] or of m{R.].

(3) Bis By = B,
Bj is either true or false. If it is true, then by the induction hypothesis there is bze m{I32]
So the constani function returning this value is evidence for) = Ba. If By is false, then 34
must also be false. This means by the induction hypothesis that m[B] is empiy. But then

the identity function is evidence for By =» Ba.

74

(4) B is Vz.Bi

Since this is true, we know that for every element a of D,

m k= By for s[s = al.

By the axiom of choice there is a function f such that f{a)e m[[](s[z := o).

{6) Bis Jx.By
For B to be true, there must be some a in D on which By is true. By the induction hypothesis,

there is a bie m[B,](s[x := a]). Then < a,b; > is evidence for B;.

qed.

3 Proofs

‘We now want to show that proofs are notations for evidence. They are expressions which denote
objects and thus have direct mathermatical meaning. The explanation of proofs comes in threc
parts. We define first their simple algebraic structure. Then we discuss the conditions necded to
guarantee that they are meaningful expressions and to determine what they prove. The statenent,
of these conditions corresponds most closely to what we think of as “proof rules.”™ "The format
suggests also rules for determining type correctuess of expressions. Finally we give the meaning of
proof expressions with respect to a model. The method here is similar to that for giving meaning
to algebraic expressions or to programs. We can in fact use rewrite rules to define most of the

constructors.

75

The Syntax of Proof Expressions

Let a, b, c,d, e, f, g, p, | range over proof expressions and let m, v, w, ¢, y denote variables {we will
use z, ¥ to denote ordinary variables over I and m, v, w, z to denote variables over proof expressions).

Let A, B, C, G, L, R denote formulas. Then the following are proof expressions: variables z, w and

andin(L:1l; R:r) andel(P:ipy u: L, v: R.G:g)
somein(D) tw; B:b) somel(P :py ¢ :Djv: B.G: g}

impin{z : A.B 1 i) impel(F: f; A:a; u: B.G:g)
allin(z : D.B 1 b) allel(F:f; Dia; 2:D, w: B.G:g)
orini(L 1) orel(T :d; u: LG gy; v: RG:gy)

orinr(R : 7)
absurd(u)
seq(S8:5 u:S5.G:g)

magic(F)

In andel(P : p; 1:L,v: R.G:g) the variables u, v are binding cecurrences whose scope is G : g
so that all occurrences of v and v in G or g are bound. In somel(P : p; 2:D,v:B.G:g) z,v
are binding occurrences whose scope is & 1 g; s0 an occurrence of ¢ in G is bound by z : D. Tn
impin(z 1 A.B : b} and allin(z : D.B : b), z and z are binding occurrences whose scope is B : 5. In
impel{F i1 f ;A:a; u:B.G:g) and allel(F:f D:a z:D, w: B.G:g), r,u are binding oceurrences
whose scope s G : g. In orel(T : d; w: L.G :gl; v: RG: ¢g2) u is a binding occurrence whose
scope is (7 : g1 and v is one whose scope is G 1 g3. In seq(5 : 55 v :5.G ! g) u Is a binding occurrence

whose scope is Gt ¢.

To preserve the pattern of the notation we introduce a name for the domain of discourse I, For

simplicity we take D to be the name of itself; this should cause no confusion since we could take a

76

. name like “domain” for D in the proof expressions and agree that the meaning of “domain” is D.

IR PRI

Correctness Restrictions

We impose certain restrictions on the parts of these expressions when we say what it means for
a proof expression a to prove a formula A. For example in impel(F : f,A : aju 1 B.G : g) the
expression F muost be an implication, say A =+ B, and f must denote a proof F and a proof of A.
The result is a proof expression for &. The constructor name, impel, is mnemonic for implication
elimination, which is a rule usually written in logic books as shown below (and sometimes called

modus ponens in the special case when G is B.

In the implication introduction forrm, impin(z : A.B : b},-it must be that 2z denotes an assumption
of a formula A and b a proof expression for B, and the impin(z : A.B : b) is a proof expression for
A = B. The expression b may use assumption z. One might think of z as a label for the assuinption.

In an informal proof we might see these elements in this relationship:

show A= B

assume z : A

show B

B

qed

The proof of B from assumption z actually shows how to build & proof expression b whicl may

refer to the label z. For example here is an informal proof 4 = A,

77

show A = A
assume z : A
A by assumption z

qed.

The proof expression built by this derivation is impin{z : 4.4 z).

It is interesting to note that the part of a derivation that is sometimes called the justificelion
[BC85,C078] corresponds closely to the proof expression. For example, suppose we look al this

fragment of a proof

B:b

’ A&B by and introduction from a, b.

The rule name, and intreduction, is used in conjunction with labels (or expressions themselves) to

justify this line of the proof,

Generally in a proof expression, the operator names, such as andin, andel etc., correspond to the

names of inference rules. Subexpressions of the form 2z : A correspond to lebeled assumpiions, and

subexpressions of the form B : b correspond to subproofs of B by b. Thus we can read the following

informal proof as the counterpart of the proof expression impin(r : A(B = A) : impin{u: B.A:)

e

T VT

78

show 4 => (B = A) by
assumption z that A holds
show (B =» A} by
assumption u that B holds

show A4 by assumption z.

In short, variables oceur to the left of the colen and indicate an assurnption of the formula while
proof expressions appear to the right of the colon and indicate why the formula is true in the context

of all of the assumptions in whose scope the formula lies,

The correctness conditions on proof expressions are given by rules that are thought of as precf

rules, Thus the rule for and intreduction is written

A B
ALB

The {formulas above the line are the hypotheses, those below the line are conclusions. Il we include

the proof expressions as justifications, we would get a rule of the form

Abya Bbyb
ALEB by andin(A :a; B: b))

This last rule shows the pattern that we will adopt. But one additional feature is needed to
keep track of the variables. A proof expression such as impin(z: 4.B:y) has a free variable y in iL.
This represents some undischarged assumption. There are no such variables in a completed proof.
But at some points in building a proof expression, there will be free variables and we musi keep
track of them. We must know what formula or what type the variable refers to so that the type

conditions and correctness conditions can be checked. Thus it is usual in presenting a proof to have

79

a mechanism for indicating the assumptions and variable bindings known at any poinl. This is done

by keeping an environment with every rule and showing how the rules change the enviroumoent.

Environments will be represented as lists of variable bindings 1 : Ay,...,z, 1 Ay, The A; are
either the domain D or formulas. The type bindings arise from all introduction while the formula

bindings arise from implication iniroductions.

The use of environments may be familiar from certain logic texts. For example, they appear
explicitly in Gentzen’s sequent caleulus [Kle52]. They are carefully defined in refinement logics
[BC85]. In programming logics like PL/CV [CO78] they appear as they do in block structyred
programming languages. Some textbooks on natural deduction introduce the analogue of a block at

least for propaositional argurments.
The format we adopt for rules is to take as basic units the triple consisting of: a proof expression,
the formula it proves and the environment for the variables, written together as

from A infer A by &

where ¢ is a proof expression, A is a formula and H is a list of bindings, & : Ay, ..., zn + A, We
sometimes isolate a specific binding by writing the environment as IF,z : A, I’ where H, H' are the
surrounding context. We call these basic units sequents, following Gentzen. Let 51, 55,... denate

them.

A rule has the form of a production as is customary in logic:

The S, are the hypothesis; S is the conclusior. Here are the rules. These define the relationship «

is @ proof ezpression for A inductively.

80

Rules

1 from H infer Lby !l from H infer Rbyr
) from H infer L&R by andin(L:l; R}

) Jrom H infer P by p from H, z: L, y:R infer G by ¢
) from H infer G by andel(P:p; o:L, y:R.Gg)

from H infer Blw/z] by b for w a term
3
© from H infer Jz.B by somuin{D:w; B:b)

4 Jrom H infer P byp from H. 2:D, w:B infer G by ¢
’ from H infer G by somel(P:p; z:DyB.Gyg)

from H, ©:A infer B by b
from H infer A=>B by impin{z:4;B:b)

6 from H infer A=2B by f from H inferd by a from HuyB infer G by g
’ from H infer G by impel(A=B:f; AwqyB.Ghg)

" from H, ©:D infer B by b
© from H infer Vz.B by allin(z:D.E:D)

8 Jfrom H infer Y2.B by f from He:DowB infer G by g for a a term
’ from H infer G by alled(¥z.B:f; D 2D B.Gg)

from H infer L byl
* from H infer L|R by orini(L:l)

10 from H infer R by r
* from H infer LR by orinr(Rir)

11 from H infer LIR by d from HuL infer G by g from H, v:R inferG by 443
: from H infer G by orel(LiR:d; w:L.Gigy: v:R.Gga)

12. from H,z: false infer G by absurd(z)

13. from H infer P | P by rnagic(P)

14 from H infer § by s from HwsS infer & by ¢
: from H infer G by seq(S:5; w:S.Gig)

A proof expressien is built inductively using the constructors starting {from the axiom and ob-

a1

serving the correctness restrictions, These restrictions can be thought of as type restrictions on the

formation of proof expressions. We give an example.

V.- B(z) = Jz.B(z) :
inpin(h : ~Vr.~B(z).
30.B(2) : seq(3z.B(z) | ~32.B(z) : magic(Iz.B(z));
d1: 3z.B(z) | ~32.B(z).
Je.B(x): orel(x.B(x) | ~30.B(z) : d1 ;
w:3e.B(z). Ju.Blz) u;
v : -3z.B(z).
3¢.B(z) ; seq(false :
impel(Vz.~B(z) = false : h ;

Vz.~B(z) : allin(z : D;~B(x) :
seq(B(z) | ~B(z) : magic(B(z));
d2: B(z) | ~B{z).~B(z) :
orel(B(z) | ~B(z) : d2;

z: B(z).~B(z) :
impel(3z.B(z) = false : v
3e.B(z) : somin(D : 23 B(z) : 2);
w: false.~B{z) : absurd{u))
w: ~B(z). ~B(z) : w)
u: false.false :)

v false . 3z.B(x) : absurd(v)))

the proof expression without the subformulas displayed is:

82

inpin(h.
seq(magic(3z. B(x));
dl.orel(dl;
U.Y;
v.seq(impel(h;
allin(z.seq(magic(B{z));
d2.orel{d2;
z.impel(v;
somin(z, z);

w.absurd(u));

v.absurd(v))))

Semantics of Proof Expressions

We now assign meaning to proof expressions with respect to some model. The definition is given
inductively on the structure of the expression and is only given for proof expressions which are
correct, 1.e. only for expresisons a for which we know that there is a formula A such that o proves

A. We will not know that the definition makes sense until Theorem 2 is proved.

In the course of the definition we must apply the meaning function over a model m to & function
hody, To explain this we extend the definition of a state to account for variables ranging over
formulas. We want to say that s{(z)e m[4}{s"). But now A may depend on other variables over D

whose meaning is given by a state, say s,

We observe that the variables occurring in a proof expression ¢ and in a formula 4 which it

83

proves can be listed in order of dependency. For simplicity, assume that all variables, both free and
hound, are uniquely and uniformliy named, say zy, z2,23,-..,. Let 4; be the type or formula over

which z; ranges. Then these can be listed in order, for simplicity 44, A4, ... such that there arc no

free variables in As, only xy is free in Ag, only 1, z; are free in A3, etc. Let us call this a cascade of
variebles and write it as @1 : Ay, x2: As(#1),.. ., 25 ¢ Anl®1,. ., 2n-1). Now a state s will map a;
into m[A;(z;,...,21)](s) and the appearence of s i the definition of s(z;) will be sensible. Far the
remainder of this section we assume that we are dealing with such a state. Now give the meaning

of a proof expression with respect to a model and a state.

I L m(andin(L : [; R : r))(s) =< m(L : [)(s), m(R : r)(s) >
i 2. mandel(P :pyu: Lyv: RG:g)}s) =
m(g)(slu 1= 1of (m)(p)(s)), v := 20f (m(p)(s))])
| 3. m(somin(D :w; B : b))(s) =
< mi{w)(s), m{b)(s) >
4. m(somel(P : somnin(D :w; B:b); z: D,y: B.G:g))(s) =
; m(g)(sz := lof (m(p)(s)), v := 20f (m(p)())}}

. mimpin{z 1 A; B 1 8))(s) = Az : m(A)(s). m(b)(s[z 1= 2]}

&

6. m{tmpel{F: fiA:a;u: B.G:g))s) =
m(g)(s[u := (m(f)(s))(m(a)(s}}})

7. m(allin(z: Dy B : 6)){s) = Az : D.m{b)(s{z := =]}

8. miallellF: fiD:iaje: Dyu: B.Gig)j(s) =
m{gKs[u := (m(f)(s))(m(a)(s))])

: 9. miorinl(L : 1))(s) = ind(m{D{s))

84

10. mforinr(R: r))(s) = inr(m{r)(s))

11. m{orel(T : t;u: LG i g1;v 1 R.G.ga))s) =
m{g){5[u = 1) if m(t)(s) is inl{l)
m{ge)(sv == 7)) if mt)(s) is inv(r)

12. m{ebsurd(u))(s) = any (s(u)) when any maps the empty set Into any sct
13. m(magic(P)){s) = an element of m(P){s) + m(~P}s)
14. m(seg(T 1 t;u: T.G: g)){s) =

m(g)(s(u := m{2)(s)})

The operations inl, inr are injections of a set into its disjunct in a disioint union, i.e.
inl: L (L+ R
inr: R {L+ R

We know by correctness that orinl applies only if [is a proof expression for L and orinl(l} is one

for L|R. Similarly for orinr. So the mappings make sense in clauses 9 and 10.

In orel(Ty,d : ; w.Ta.G 1 g1 ;v ¢ T5.G t g2) we know that d must be a proof expression for a
disjunction, so 7% is A|B. Thus m(d)(s) will be a member of m[A|B](a} as we show. Thas m(d)(s)

is either ini{a) or inr(b) for a in m[A](s) and b in m[B](s).

The analysis of somel(P :p; z: D, y: B.G: g) is just as for andel. We know thal m(p)(s]
is a pair consisting of an element of D and evidence that the element is a witness for an existential

quantifier. In case of magic(A4), we must use the axiom of choice to pick out an element of the

inhabited type. We conclude this section with a theorem that shows that the meaning of a prool

expression is well-defined when the proof expression proves a formula.

S M.WM

85

Theorem 2 Ifa is a proof ezpression for formula A, and if 21 : Ay 29 Ac(zy), ..o 20t Al . S Enoa)
is a cascaded enumeration of the free variables of a and A with their bindings, and {f m is any model
and & any slate assigning s(z;) to m[A;(2;, ..., 2;_1)}(s), ther m(a) ¢ m[A]{s).

proof

The proof is by induction on the structure of the proof expression a. In the base case, @ is some
variable ; or magic(C) for a formula C. If a is a variable, then by hypotheses m(a){s) = s(n) =

s{z:) e m[Ai(z1, ..., 2i1)](s). If ais magic(C), then A is C{~C and m(a)(s) ¢ m[C](s) +m[-C](s).

Now consider the induction case. We assume that the result holds for any suhexpression b of «,
in any state 8" assigning proper values to all free variables of b as required by the antecedent of the

induction hypothesis.

induction hypothestis : assume m(b)(s') ¢ m[B](s)

wheve £ is the formula proved by b for b a subexpression of a.

We proceed by cases on the outer structure of a {see the syntax of proof expressions).

L aisandin{L:; R :r)

Then A must be the conjunction L&R because otherwise o would not be a proof cxpres-
sion for A. By the induction hypothesis the subexpressions of a satisfy the theorem, so
m(l)(s)e m{L](s) and m(r)(s)e m[R](s). But then the result holds by the definition that
r m(andin{L : §; R: #))(s) =< m(}){s), m(r)(s) > ¢ m[L&R)(s).

2. aisandel(P:pju: Lv: R.G:yg)

Then A is G according to the typing rules. Moreover, P must be the conjunction LR,

86

I and R must be formulas, p must be a proof expression for L& R, and ¢ is a proof expression
for G in which variables u, v can occur. We also know by the typing rules that w : Lo I
are hypotheses in typing g. Now consider any state &' which extends s and assigns s'(u) to
m(L)(s) and s'(v) to m{R)(s). For this state and for g, the induction hypothesis holds, so
that m(g)(s)¢ m(G)#). By definition, m{andel(P : pju : L,v : R.Gg)}s) = m(g){s[u :=
Lof (m(p)()),v := 20 (mP)(s))]), and sfu = Lof (m(p)(s)),v = 20f (m(p)(s))] is & state

salisfying the condition on 5 since m(p)(s)e m{L& R](s) is true by the induction hypothesis,

. ais somin(D :w; B : b)
Then according to the typing rules, A must be 3z.B, w must be a term and b is a proof
expression for B[w/z]. By the induction hypothesis, m(b)(s}e m[B[z/z]l(s}, so by definition

the meaning of @ belongs to the right set.

. ais somel(Pypyx: Dyy: B.G:yg)

Then by the typing rules, P must be the existential statemeunt 3z.B(z) and g 15 a preof
expression for G using x a variable over I? and y a variable over B. By the induction hypothesis,
the meaning of p is a pair, say < m(w)(s),d > with m{w)(s) in 2 and b in m[B[w/x]]{s).

Just as in 2 we conclude m{a)(s)e m[A](s).

. aisimpin(z: P;B:b)

Then A is P = B and b is a proof expression for B which can use the variable z assumed
to range over m{P]{s). This means that by the induction hypothesis, m{b}(s[z := 1]} is in
m[B](s) for all { in m[P](s). Thus Az : m[P](s).m(b)(s[z := z]) is a function from m[P](s}

into m[B](#) as required to prove this case.

.aisimpel(F : i Pipiu: B.G:yg)
By the typing rules, F must be the implication P =+ B, f is a proof expression for it, and the

induction hypothesis, m{f)(s)e m{F](s). Alse, m{p)(s)e m{P)(s) and for all states &' extend-

S

10.

11.

12,

13.

87

ing s and assigning u a value in m[B](s), m(g){s')e m{G](s). Let b denote (m(f)(s)){m(pi(s)),

since b belongs to m(B){s), then m{g)(s{u == b])e m[G](5); so the result holds.

caisallin(z: D;B:b)

This case is like 5.

caisallel{F: fiPipiz: D,y: B.G:g)

This case is like 6.

. aisorini(L : 1)

Then A must be L | R and ! is a proof expression for L. So by the induction hypothesis

m(N)(s)e m(L)(s). Thus in{(m({)(s)) belongs to m[A](s) as required.

¢ is orin(R:r)

This case is like 9.

aisorel(T 1 tju: L.G:g3v: RG: ga)

By the typing rules, T must be L | R, and by the induction hypothesis m(t){s)e m{T)(s).
Thus t is cither inl({) or inr(r). Also by the typing rules we know that g; and g5 are prool
expressions for G under variable bindings for 4 and » so by induction hypothesis we know Lhat
m{gy)(s[u 1= f)e m{G)(s) and m(gz)(s[v := r]) e m(CYs). This is what is needed Lo show

mfa)(s)e mlA](s).

a is absurd(u)
By the typing rules, A is proved from the hypothesis « : false. That is, A is proved under the
assurption that there is something in the empty set, s(ujed. But there is a trivial map [rom

the empty set to any set, call it any, so any(s{u)) belongs to any set, in particular te mifA](s}.

a is magic(P)
Then A must be P | ~F and by definition m{magic(P)}(s)e m[P](s) + m[-P]}(s) which is
mA](s)-

88

14. ais seq(T 1 t;u: TG 1 g) :
By the induction hypothesis m(¢}(s)em[T](s) and m(g)(s')e m{G)(s) for any s' where s'{u)e m{7 Y

thus m{g){s[u := m(t)(s)]) since s{u := m(t)(s)] satisfies the condition for .

qed.

Computational Semantics and Constructive Logic

With the exception of magic(A), all proof expressions are given meaning in terms of recursively

defined equations. For example, m(andin(L : §; B:r))(s) =< m(L : {)(s), m{R:r)(s) >.

If the law of excluded middle, P | ~ P, is removed from the predicate logic, then we know that in
some sense the underlying theory of evidence is compuiable, If we add expressions and rules which

can be explained in terms of computable evidence, then the entire theory can be explained this way.

Predicate logics without the law of excluded middle or its equivalents are in some sense cansivue-
tive, sometimes they are called Intuitionistic logics after Brouwer {Bro23]. Arithmetic based on this
logic and the Peano axioms is called Heyting arithmetic after the Intuitionist A. Heyting [Hey6ii,
These topics are treated thoroughly in Kleene [Kle52], Dummett {Dum77} and Troelstra [Tro73].
Anpalysis built on such a Jogic extended to higher order is sometimes called censiructive analysis see

Bishop [Bis67]. These topics are discussed in Troelstra [Tro73] and Bridges [BB85].
Programming

The PRI programming systemns built at Cornell in the early 1980°s [BC85,ML84] are based on
the idea that formal constructive logic, because of its conputational semantics, provides a new kind

of very high level programming language. This idea was first explored in Coustable [ConTl} anid

89

Bishop [Bis70}. It was later developed by Bates and put into practice by Bates and Constable

[BC835]. The semantics of evidence discussed here is quite close to the actual implementation ideas

in Nuprl [ML82].

Acknowledgements

I want to thank Ryan Stansifer and Todd Knoblock for helpful comments and Elizabeth Maxwell

for preparing the manuscript,

References

[AcaT8}

[BBS85]

[BCsS]

[Ris67]

[Bis70}

[Bro23]

[CAB+86]

Peter Aczel. The type theoretic interpretation of constructive set theory. In Legic Col-

loquium *77, pages 55-66. Amsterdam:North-Holland, 1978,
Errett Bishop and Douglas Bridges. Construciive Analysis. NY:Springer-Verlag, 1985,

Joseph L. Bates and Robert L. Constable. Proofs as programs. ACM Trans. Program.

Lang. and Syst., 7(1):53-71, 1985.
E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967,

E. Bishop. Mathematics as a numerical language. In Intuitionism and Proof Theory.,

pages 53-71. NY:North-Holland, 1970.

L.E.J. Brouwer. On the significance of the principle of excluded middle in mathematics.

In J. fur die Reine und Angewandic Math, volume 154, pages 1-2, 1923,

Robert L. Constable, S. Alien, H. Bromely, W. Cleveland, and et al. Implemeniing

Mathemalics with the Nuprl Development Sysiem. NJ:Prentice-Hall, 1986,

[COT8]

[Con71]

[deB&0]

{Dum77}

[Gir71]

[Hey66)

[Kleb2]

[L.586]

[ML82]

[ML84)

[Rus03]

90

Robert L. Constable and Michael J. (Donnell. 4 Programming Logic. Mass:Winthrop,

1978.

Robert L. Constable, Constructive mathematics and automatic program writers, 1In

Proc. IFP Congr., pages 229-33, Ljubljana, 1971.

N.G. deBruijn. A survey of the project automath. Essays in Combinatory Logic, Lambda

Caleulus, and Formalism, pages 589606, 1980,

M. Dummet. Flemenls of Intuitionism, Ozford Logic Series. Ciaredon Press, Oxford,

19771.

J-¥. Girard. Une extenston de Vinterpretation de godel a Panalyse, et son application
a Pelimination des coupures dans P’analyse et la theorie des types. In #ad Scandinavian

Logic Symp., pages 63-69. NY:Springer-Verlag, 1971.
A. Heyting. Intuitionism. North-Holland, Amsterdam, 1966,
Stephen C. Kleene. Introduction to Metamethematics. Princeton:van Nostrand, 1952,

J. Lambeck and P. Scott. Introduction to higher order categorical logic. Cambridge

University Press, Cambridge, 1986.

P. Martin-Lof. Constructive mathematics and computer programming. In Sizth In-
ternational Congress for Logic, Methodology, and Philosophy of Science, pages 153-75.

Amsterdam:North Holland, 1982.
P. Martin-Lof. Intfuitionistic Type Theory. Bibioplois, Napoli, 1984,

B. Russell. Mathernatical logic as based on a theory of types. Am. J. Math,, 30:222-62,

1903.

[ScoTd]

[Tai67]

[Tar44]

[Tro73}

v80]

a1

D. Scotl. Constroctive validity. In Symp. on Automatic Demonsiration, Lecture Notes

in Math., volumne 125, pages 237-275. Springer-Verlag, 1970.

W. Tait. Intensional interpretation of functionals of finite type. In J. Symébelic Logic,

volume 32(2), pages 187-199, 1967,

A. Tarski. The semantic conception of truth and the foundations of semantics. Philos.

and Phenom. Res., 4:341-376, 1944.

A, Troelstra. Metamathematical Investigation of Intuitionistic Mathematics. Springer-

Verlag, New York, 1973.

I. van Daalen. The Language Theory of AUTOMATH. PhD thesis, Tech. University of
Edinburgh, 1980.

