Investigating Correct-by-Construction
Attack-Tolerant Systems

Robert Constable, Mark Bickford, Robbert van Renesse
Department of Computer Science
Cornell University
Ithaca, NY
Email: {rc,markb,rvi @cs.cornell.edu

Abstract—Attack-tolerantdistributed systems change their pro- a high level of abstraction that can be refined automatically
tocols on-the-fly in response to apparent attacks from the envi- to processes. Recently we have extended our methodology
ronment; they substitute functionally equivalent versions possibly to a broader notion of process, General Process Model

more resistant to detected threats. Alternative protocols can .
be packaged together as a singl@adaptive protocolor variants [BC10a], b.road enough to encompass the .h|gher-or7de.r
from a formal protocol library can be sent to threatened groups Calculus [Mil09] and otheprocess algebrathat include Petri

of processes. We are experimenting with libraries of attack- nets. In the new model we can synthesize and reason about
tolerant protocols that are correct-by-construction and testing mobile processeas well.
them in environments that simulate specified threats, including
constructive versions of the famous FLP imaginary adversary B. Outline
against fault-tolerant consensus. We expect that all variants of) . .
tolerant protocols are automatically generated and accompanied ~ In the next section we describe our formal computing model
by machine checked proofthat the generated code satisfies formal and the basic concepts needed to talk about mobile processes
properties. and to state assumptions on the computing environment. A
simple consensus protocol illustrates the key ideas. In the final
section we discuss the construction of attack-tolerant protocols
based orsynthetic code diversitgnd show how to state prop-
Using a constructive Logic of Events based on Comperties of the environment and create experimental computing
tational Type Theory (CTT) [ABCO06], [CBO08], [Bic09] we platforms to test attack-tolerant protocols, for instance by
have been able to formally specify safety and liveness prdpunching a provably unbeatable attack withcanstructive
erties for distributed protocols and synthesize executable coassion of the Fischer/Lynch/Paterson result [FLP85].
from constructive proofs that the specifications are realizable
[CB08]. We have used thiproofs-as-processemethod to Il. FORMAL DISTRIBUTED COMPUTING MODEL
build fault-tolerant protocols, provably secure protocols, and Here is a brief overview of our new General Process Model
adaptive protocols [LKVR+99]. Recently we have createdC10a] of distributed computation. We mention key concepts
versions of the important Paxos consensus protocol [Lam@it} reasoning about event structures created from these com-
this way. This basic methodology has led us to experimeptitations. Asystemconsists of a set oEtomponentsEach
with protocols that we think of asttack-tolerantin the component has &ocation an internal part, and anexternal
sense that they can respond to perceived threats from ffeat. Locations are just abstract identifiers. There may be
environment such as denial of service attacks, message omiere than one component with the same location. The internal
attacks, Byzantine attacks, and other threats. These attgohrt of a component is process—its program and internal
tolerant protocols will respond by adaptirop-the-flyto al- (possibly hidden) state. The external part of a component is
ternative versions that are also known to be provably corrétd interface with the rest of the system. In this account, the
and provide the same functionality. This system developmenterface will be a list ofmessagegscontaining eitherdata
capability is based on a computational semantics for asserti@msprocesses, labeled with the location of the recipient. The
in our standard Logic of Events. This logic is based othigher order” ability to send a message containing a process
the concept ofevent structuregWin89], [Abr99] which are allows a system to grow by “forking” or “bootstrapping” new
defined over executions of process in #tandard modebf components. A system executes as follows. At each step, the
asynchronous message passing computation [Lyn96], [AWO0&hvironmentmay choose and remove a message from the
This semantics is expressed in CTT in such a way thexternal component. If the chosen message is addressed to
proof terms contairdistributed realizers These realizers are a location that is not yet in the system, then a new component
abstract processes which can be compiled into appropriggecreated at that location, using a givieoot-processand an
programming languages such as Java, ML, Erlafig, etc. empty external part. Each component at the recipient location
A key step in making this methodology practical is the useceives the message as input and computes a pair that contains
of programmable event classés specify computing tasks ata process and an external part. The process becomes the

I. INTRODUCTION
A. Background

next internal part of the component, and the external partdlssesauseevents with related information content in other
appended to the current external part of the component.chisses, e.g. Collect causes a Vote event with vgluésg,).
potentially infinite sequence of steps, starting from a givdn general, arevent classX is a function on events in an event
system and using a given boot-process, israof that system. ordering thateffectively partitionsvents into two setsf(X)
From a run of a system we derive an abstraction of its behavemd £ — E(X), and assigns a valug (e) to eventse € E(X).

by focusing on theeventsin the run. The events are the pairs
(z,n), of a location and a step at which locatian gets
an input message at step i.e. information is transferred. Let P and D be the classes of events with headgrspose
Every event has a location, and there is a nataasal- and decide, respectively. Then theafety specificatiorof a
ordering on the set of events, the ordering first considered lzpnsensus protocol is the conjunction of two propositions
Lamport [Lam78]. This allows us to define awent-ordering on (extended) event-orderings, callagreementall decision

a structure(E, loc, <, info), in which the causal ordering events have the same value) arasponsiveneséthe value

< is transitive relation orE that is well-founded, and locally- decided on must be one of the values proposed):

finite (each event has only finitely many predecessors). Also,

the events at a given location are totally ordered<hyThe Ver,ez: E(D). D(e1) = D(e2)

information, info(e), associated with evert is the message Ve: E(D). 3¢': E(P). ¢ <e N D(e) = P(€)

input to loc(e) when the event occurred. We have found .

that requirements for distributed systems can be expresd¥g can prove safety and the followirigeness propertabout

as (higher-order) logical propositions about event-ordering@voThirds. We say that activity in the protocobntracts to

To illustrate this and motivate the results in the rest of tté Subsets of exactly2f +1 processes if these processes all

paper we present a simple examplecohsensusn a group VOt€ in electionn say atvt(n)y, ..., vt(n)y for k = 2f + 1
of processes. and collect these votes atn)i, ..., c(n);, and all vote again

_ _ in electionn 4+ 1 atvt(n + 1)1, ...,vt(n + 1), and collect at
Example 1. A simple consensus protocol: TwoThirds c(n+1)1,...,c(n+1)g. In this case, these processesSirall

Each participating component will be a member of sonfifcide in roundn + 1 for the value given byf applied to
groups and each group has a nafieA messag€G,) from the collected_votes. This is .Ia_/enessproperty. If exactly f
the environment to componehinforms it that it is in group. Processes fail, then the activity of the grogpcontracts to
The groups have = 3f+1 members, and they are designed t§omeS and decides. Likewise if the message traffic is such
toleratef failures. When any component in a groGireceives that f processes are _delayed_for an election, then the pro_tocol
a messagé|start], G) it starts the consensus protocol whosgontracts toS and deqde;. This fact shows that the TwoThirds
goal is to decide on values received by the members frdffPtocol isnon-blocking i.e. from any state of the protocol,
clients We assume that once the protocol starts, each procH¥&¥® is a path to a decision. We can construct the path to
has received a value or has a default non-value. The simplé® decision given a set of processes that we delay. We also
TwoThirds consensus protocol is this: A procgghat has a proved safety and liveness of a varla_nt of t_hls protocql that can
valuew; of type T starts arelectionto choose a value of type CONVerge to consensus faster. In this varianiifreceives a
T (with a decidable equality) from among those received BﬁPte §eaﬂ> from.a higher electiong > el;, then PZ joins that
members of the group from clients. The elections are identifi§fCtion by settingl; := ¢;v; := v; and then going to step 2.
by natural numbers/; initially 0, and incremented by 1, and
Boolean variablelecide; is initially false. The function from
lists of values,Msg, to a value is a parameter of the protocol. If ¢ is a proposition about event orderings, e.g. liveness,
If the type T' of values is Boolean, we can taketo be the We say that a systemealizes), if the event-ordering of

Example 2. Consensus specification: TwoThirds

. Realizers and Strong Realizers

majority function. any run of the system satisfigs We extend the “proofs-as-
Begin programs” paradigm to “proofs-as-processes” for distributed
Until decide; do: computing by making constructive proofs that requirements
1. Increment el;; 2. Broadcast vote (el;, v;) to G; are realizable For compositional reasoning, it is desirable
3. Collect in list Msg; 2f + 1 votes of electiorel;; to create astrong realizerof requirementyy)—a system that

4, Choosewv; = f(Msg,); realizesy in any context Formally, systemS is a strong
5.1f Msg, is unanimousghen decide; := true realizer of ¢ if the event-ordering of any run of a system
End S’ such thatS C ', satisfiesy). If S is a strong realizer of

We describe protocols like this by classifying the events occufa andS: is a strong realizer of», thenS; U S; is a strong

ring during execution. In this algorithm there dreput, Vote ~ realizer ofy; A 1b2. One of our main tools is that propagation
Collect and Decide events. The components can recognizélles like those used in the consensus example have strong
events in each of thesevent classegin this example they realizers. A realizer for a propagation rute> BaQyg is a set
could all have distinctive headers), and they can associatecomponents that can each, as a (computable) function of
information with each event (e.dge;,v;) with Vote, Msg, the history of inputs at its location, recognize, and compute
with Collect, and f(Msg,) with Decide). Events in some the valuev of events in classd that occur there and send

messages that will eventually result in an events in class A. Synthetic Code Diversity
with value f(v) at each location ig(v). We call the classed \ye jniroduce diversity at all levels of the formal code

that can be so recognizquogrammable Basic event Classesdevelopment (synthesis) process starting at a very high level

are programmable, aqd the set c,’f programmable event Claséleﬁbstraction. For example, in the TwoThirds protocol, we
is closed under a variety aombinators Thus many classes can use different functiong, alter the means of collecting

can be_ automatically shown to_be programmable, and th‘?\%gi, synthesize variants of the protocol, alter the data types,
recognizers generated automatically, see [Bic09]Blfis a

: . . ; etc. We are able to create multiple provably correct versions
basic class and if we haveliable message deliverghen a of protocols at each level of development, e.g. compiling
component.may cause an eyenBrby placing a message with TwoThirds into Java, Erlang, anél#. The higher the starting
an appropriate heade_:r on its ext_ernal part. A rulez B point for introducing diversity, the more options we can create.
1S programmable-basm(PB) .'f Als p_rogrammable ancB We can also inject code diversity into the fully automatic
'S baS|c.Under. the assumption of reliable message delivery, ification of authentication protocols iRrotocol Compo-
every PB-rule is realizable. sition Logic (PCL) [DDMROQ7] implemented in our system.

Reliable message delivery is an assumption about the enyfese synthetic diversity techniques generate a large set of
ronment. In this case, the assumption iianess assumption components, each of which is associated with a “genotype”
on the choices the environment makes, stating that all mesat describes the parameters (such as choice of algorithm,

sages in the external part of a component will eventually R@oice of data structure, choice of implementation language)
chosen. We weaken this assumption by allowing some cofised to generate components of its “species”.

ponents to suffesend omission faultdJnder that assumption,

parameterized by a set of locatiori$, called thefail-set, every

message on the external part of a component whose |°Cat|§7.”Formalizing the Environment
is not in F', will eventually be delivered. If send omissions

are allowed, not every PB-rule is realizable, but the restricted’V& can precisely describe how diversification and recon-
rule A|(~F) = B is realizable, wherd = B is PB, and figuration respond to threatening features of the environment

A|(~F) is the class ofA-events whose location is not inPecause we caexpress some threats formaélpd discriminate

the fail-set. A fault-tolerant protocol like TwoThirds can béMong the different kinds as is done in thysiad system
described by such restricted rules, and proved correct unffdyRBDO8] to defend against Byzantine attacks. This capa-
appropriate assumptions on the size of the fail-set. A PB-rdpdity will allow us to study how diversity defends systems.
A = Bis also strongly realizable. Some desirable propertiEQ" €xample, we have studiedessage order attacks which
of protocols like consensus do not follow from conjunctions ¢i€ environment delays key messages in consensus protocols
PB-rules alone. We also need somepagation constraints 0 keep the system from deciding in a timely manner. This is
of the form A & Ba@yg. A realizer constructed for £ Bay an instance of the general phenomenon uncovered t_)y Fischer,
will generate B-events only fromA-events, so it will also Lynch, and Paterson [FLP85] that consensus algorithms can
. £ Ba be systematlcally defeated, as we discuss next. .
realize A 9 a) The Environment as Adversaryhe standard version
of the Fischer/Lynch/Paterson theorem is that no deterministic
algorithm can solve the consensus problem for a group of
. ATTACK TOLERANCE process in which at least one process might fail. This is a
negative statement, producing only a contradiction, yet implicit
We assume that our systems will be attacked. We wil all proofs is animagined constructiof a nonterminating
protect protocols by formally generating a large number @Xxecution in which no process decides, they “waffle” endlessly.
logically equivalent variantsstored in anattack response It appears that no such explicit construction could be carried
library. Each variant uses distinctly different code which aut following the method of the classical proof because there
system under attack can instalh-the-flyto replace compro- isn't enough information given with the protocol.
mised components. Each variant is known to be equivalent andrhe key to being able to build the nonterminating execution
correct. We express threatening features of the environménto provide more information, which was done in [RCO08]
formally and discriminate among the different types. We cavy introducing the notion oé&ffective nonblockingEffective
do this in our new GPM model becauske environment nonblocking is a natural concept when protocols are verified
is an explicit component about which we can reas®this using constructive logic. P is calledeffectively nonblocking
capability allows us to study in depth how diversity works from any reachable global state of an execution ofP
to defend systems. We can implement attack scenariosaasl any subset) of n — f non-failed processesye can
part of our experimental platform. It is interesting that wéind an executiona from s using Q and a process’, in
can implement aonstructive versiofRCO08] of the famous @ which decides a value. Constructively this means that
Fischer/Lynch/Paterson result [FLP85] that shows how awe have acomputable functionwi(s, @), which produces
attacker can keep any deterministic fault-tolerant consensars executiona and a states, in which a process, say’,
protocol from achieving consensus. decides a value. Theorem (CFLP): Given any deterministic

effectively nonblocking consensus procedufewith more [AwW04] Hagit Attiya and Jennifer Welch. Distributed Computing 2nd

than two processes and tolerating a single failure, we canEdition, Wiley, 2004. o .
ffectivel truct t inati ti fit. Let th Bic09] Mark Bickford. Component Specification Using Event Classes.
elrectively construct a nonterminating execution or it. Le Lecture Notes in Computer Scienal 5582, 140-155, 2009.

function produced by this proof bigpc, then for a consensus[BC10a] Mark Bickford and Robert Constable Generating Event Logics with

procedure such as thEwoThirds protocol given above and Higher-Ord'er Processes as Realizers, Computer Science Technical Report,
. . . Cornell University, 2010.
Its nonblockmg proofnb, we have that the environment Car[CBOS] Robert Constable and Mark Bickford. Formal Foundations of
useflpc(nbd) to create a message-order attack that will prevent Computer Security, NATO Science for Peace and Security Series D:
TwoThirds from deciding. Information and Communication Securitypl 14, 29-52, 2008.
[CPS93] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The
Concurrency Workbench: A Semantics Based Tool for the Verification of
Concurrent SystemsACM Transactions on Programming Languages and
IV. CONCLUSION Systems15, 36-72, 1993.
. . L RCO08] Robert Constable. Effectively Nonblocking Concensus Procedures
We are exploring how to build distributed systems thét Car]1 Execute Forever - a Construci/ive Version ngj FLP, Cornell University
are attack-tolerant by design. The key idea is to implementTech Report Ref Number 11512, 2008.
systems that can respond to attacks by modifying their coRPMRO7] A. Datta, A. Derek, J.C. Mitchell, A. Roy. Protocol Composition

. . . Logic, Electronic Notes in Theoretical Computer Scignt#2, 311-358,
in a provably safe way. We believe that the more code vanantszogl P .

we can produce, the more resistant systems are to attack. [fU@85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.

; Impossibility of distributed consensus with one faculty proce3&CM,
have found ways to automatically produce many provably Vol 32, 374382, 1985,

equalem _Va”ants Of_ components using formal Synthes[ﬁvRBDOS] C. Ho, R. van Renesse, M. Bickford, D. Dolev. Nysiad: practical
Variation arises from different choices made during synthesis.protocol transformation to tolerate Byzantine failure®roceedings of

We start at a very high level of abstraction by formally proving the Sth USENIX Symposium on Networked Sys Design andi1ifspl 88,
that spemﬁga‘uons are achievable. By s_tartmg at SUCh.a highm7g] Leslie Lamport. Time, clocks, and the ordering of events in a
level, we discovered more correct options than possible bydistributed systemComm ACM 21(7), 558-65, 1978.

less technically advanced methods. This discovery reveals ri@)01] Leslie Lamport Paxos made simple\CM SIGACT Newsd,
reasons for working formally at high levels of abstraction. [LKVR+99] X. Liu, C. Kreitz, R. van Renesse, J.Hickey, M. Hayden, K.
Birman, R. Constable. Building reliable, high-performance communication
systems from components, ACM Symposium on Operating Systems
Principles (SOSR)ACM Press, 80-92, 1999.
REFERENCES [Lyn96] Nancy Lynch. Distributed Algorithms Morgan Kaufmann Publish-
[ABCO06] Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton, ers, San Mateo, CA, 1996.
Christoph Kreitz, Lori Lorigo, and Evan Moran. Innovations in Com{Mil09] Robin Milner. The Space and Motion of Communicating Agents
putational Type Theory using NuprlJournal of Applied LogicElsevier Cambridge University Press, 2009.
Science, 428-469, 2006. [Win89] Glynn Winskel. An introduction to event structurdsNCS 345,
[Abr99] Uri Abraham.Models for ConcurrengyGordon and Breach Science Springer, NY, 364-397, 1989.
Publishers, 1999.

