
Investigating Correct-by-Construction
Attack-Tolerant Systems

Robert Constable, Mark Bickford, Robbert van Renesse
Department of Computer Science

Cornell University
Ithaca, NY

Email: {rc,markb,rvr}@cs.cornell.edu

Abstract—Attack-tolerantdistributed systems change their pro-
tocols on-the-fly in response to apparent attacks from the envi-
ronment; they substitute functionally equivalent versions possibly
more resistant to detected threats. Alternative protocols can
be packaged together as a singleadaptive protocolor variants
from a formal protocol library can be sent to threatened groups
of processes. We are experimenting with libraries of attack-
tolerant protocols that are correct-by-construction and testing
them in environments that simulate specified threats, including
constructive versions of the famous FLP imaginary adversary
against fault-tolerant consensus. We expect that all variants of
tolerant protocols are automatically generated and accompanied
by machine checked proofsthat the generated code satisfies formal
properties.

I. I NTRODUCTION

A. Background

Using a constructive Logic of Events based on Compu-
tational Type Theory (CTT) [ABC06], [CB08], [Bic09] we
have been able to formally specify safety and liveness prop-
erties for distributed protocols and synthesize executable code
from constructive proofs that the specifications are realizable
[CB08]. We have used thisproofs-as-processesmethod to
build fault-tolerant protocols, provably secure protocols, and
adaptive protocols [LKvR+99]. Recently we have created
versions of the important Paxos consensus protocol [Lam01]
this way. This basic methodology has led us to experiment
with protocols that we think of asattack-tolerant in the
sense that they can respond to perceived threats from the
environment such as denial of service attacks, message order
attacks, Byzantine attacks, and other threats. These attack-
tolerant protocols will respond by adaptingon-the-fly to al-
ternative versions that are also known to be provably correct
and provide the same functionality. This system development
capability is based on a computational semantics for assertions
in our standard Logic of Events. This logic is based on
the concept ofevent structures[Win89], [Abr99] which are
defined over executions of process in thestandard modelof
asynchronous message passing computation [Lyn96], [AW04].
This semantics is expressed in CTT in such a way that
proof terms containdistributed realizers. These realizers are
abstract processes which can be compiled into appropriate
programming languages such as Java, ML, Erlang,F#, etc.
A key step in making this methodology practical is the use
of programmable event classesto specify computing tasks at

a high level of abstraction that can be refined automatically
to processes. Recently we have extended our methodology
to a broader notion of process, aGeneral Process Model
[BC10a], broad enough to encompass the higher-orderπ-
calculus [Mil09] and otherprocess algebrasthat include Petri
nets. In the new model we can synthesize and reason about
mobile processesas well.

B. Outline

In the next section we describe our formal computing model
and the basic concepts needed to talk about mobile processes
and to state assumptions on the computing environment. A
simple consensus protocol illustrates the key ideas. In the final
section we discuss the construction of attack-tolerant protocols
based onsynthetic code diversityand show how to state prop-
erties of the environment and create experimental computing
platforms to test attack-tolerant protocols, for instance by
launching a provably unbeatable attack with aconstructive
version of the Fischer/Lynch/Paterson result [FLP85].

II. FORMAL DISTRIBUTED COMPUTING MODEL

Here is a brief overview of our new General Process Model
[BC10a] of distributed computation. We mention key concepts
for reasoning about event structures created from these com-
putations. Asystemconsists of a set ofcomponents. Each
component has alocation, an internal part, and anexternal
part. Locations are just abstract identifiers. There may be
more than one component with the same location. The internal
part of a component is aprocess—its program and internal
(possibly hidden) state. The external part of a component is
its interface with the rest of the system. In this account, the
interface will be a list ofmessages, containing eitherdata
or processes, labeled with the location of the recipient. The
“higher order” ability to send a message containing a process
allows a system to grow by “forking” or “bootstrapping” new
components. A system executes as follows. At each step, the
environmentmay choose and remove a message from the
external component. If the chosen message is addressed to
a location that is not yet in the system, then a new component
is created at that location, using a givenboot-process, and an
empty external part. Each component at the recipient location
receives the message as input and computes a pair that contains
a process and an external part. The process becomes the



next internal part of the component, and the external part is
appended to the current external part of the component. A
potentially infinite sequence of steps, starting from a given
system and using a given boot-process, is arun of that system.
From a run of a system we derive an abstraction of its behavior
by focusing on theeventsin the run. The events are the pairs,
〈x, n〉, of a location and a step at which locationx gets
an input message at stepn, i.e. information is transferred.
Every event has a location, and there is a naturalcausal-
ordering on the set of events, the ordering first considered by
Lamport [Lam78]. This allows us to define anevent-ordering,
a structure,〈E, loc, <, info〉, in which the causal ordering
< is transitive relation onE that is well-founded, and locally-
finite (each event has only finitely many predecessors). Also,
the events at a given location are totally ordered by<. The
information, info(e), associated with evente is the message
input to loc(e) when the event occurred. We have found
that requirements for distributed systems can be expressed
as (higher-order) logical propositions about event-orderings.
To illustrate this and motivate the results in the rest of the
paper we present a simple example ofconsensusin a group
of processes.

Example 1. A simple consensus protocol: TwoThirds

Each participating component will be a member of some
groups and each group has a name,G. A message〈G, i〉 from
the environment to componenti informs it that it is in groupG.
The groups haven = 3f+1 members, and they are designed to
toleratef failures. When any component in a groupG receives
a message〈[start ], G〉 it starts the consensus protocol whose
goal is to decide on values received by the members from
clients. We assume that once the protocol starts, each process
has received a valuevi or has a default non-value. The simple
TwoThirds consensus protocol is this: A processPi that has a
valuevi of typeT starts anelectionto choose a value of type
T (with a decidable equality) from among those received by
members of the group from clients. The elections are identified
by natural numbers,eli initially 0, and incremented by 1, and a
Boolean variabledecidei is initially false. The function from
lists of values,Msg i to a value is a parameter of the protocol.
If the typeT of values is Boolean, we can takef to be the
majority function.
Begin
Until decidei do:
1. Increment eli; 2. Broadcast vote 〈eli, vi〉 to G;
3. Collect in list Msg i 2f + 1 votes of electioneli;
4. Choosevi := f(Msg i);
5. If Msg i is unanimousthen decidei := true
End
We describe protocols like this by classifying the events occur-
ring during execution. In this algorithm there areInput, Vote,
Collect, and Decide events. The components can recognize
events in each of theseevent classes(in this example they
could all have distinctive headers), and they can associate
information with each event (e.g.〈ei, vi〉 with Vote, Msg i

with Collect, andf(Msg i) with Decide). Events in some

classescauseevents with related information content in other
classes, e.g. Collect causes a Vote event with valuef(Msg i).
In general, anevent classX is a function on events in an event
ordering thateffectively partitionsevents into two sets,E(X)
andE−E(X), and assigns a valueX(e) to eventse ∈ E(X).

Example 2. Consensus specification: TwoThirds

Let P andD be the classes of events with headerspropose
and decide, respectively. Then thesafety specificationof a
consensus protocol is the conjunction of two propositions
on (extended) event-orderings, calledagreement(all decision
events have the same value) andresponsiveness(the value
decided on must be one of the values proposed):

∀e1, e2 :E(D). D(e1) = D(e2)
∀e :E(D). ∃e′ :E(P ). e′ < e ∧ D(e) = P (e′)

We can prove safety and the followingliveness propertyabout
TwoThirds. We say that activity in the protocolcontracts to
a subsetS of exactly2f + 1 processes if these processes all
vote in electionn say atvt(n)1, ..., vt(n)k for k = 2f + 1
and collect these votes atc(n)1, ..., c(n)k, and all vote again
in electionn+ 1 at vt(n+ 1)1, ..., vt(n+ 1)k, and collect at
c(n+ 1)1, ..., c(n+ 1)k. In this case, these processes inS all
decide in roundn + 1 for the value given byf applied to
the collected votes. This is alivenessproperty. If exactlyf
processes fail, then the activity of the groupG contracts to
someS and decides. Likewise if the message traffic is such
thatf processes are delayed for an election, then the protocol
contracts toS and decides. This fact shows that the TwoThirds
protocol isnon-blocking, i.e. from any state of the protocol,
there is a path to a decision. We can construct the path to
a decision given a set off processes that we delay. We also
proved safety and liveness of a variant of this protocol that can
converge to consensus faster. In this variant, ifPi receives a
vote 〈e, v〉 from a higher election,e > eli, thenPi joins that
election by settingeli := e; vi := v; and then going to step 2.

A. Realizers and Strong Realizers

If ψ is a proposition about event orderings, e.g. liveness,
we say that a systemrealizes ψ, if the event-ordering of
any run of the system satisfiesψ. We extend the “proofs-as-
programs” paradigm to “proofs-as-processes“ for distributed
computing by making constructive proofs that requirements
are realizable. For compositional reasoning, it is desirable
to create astrong realizerof requirementψ—a system that
realizesψ in any context. Formally, systemS is a strong
realizer of ψ if the event-ordering of any run of a system
S′ such thatS ⊆ S′, satisfiesψ. If S1 is a strong realizer of
ψ1 andS2 is a strong realizer ofψ2, thenS1 ∪ S2 is a strong
realizer ofψ1∧ ψ2. One of our main tools is that propagation
rules like those used in the consensus example have strong

realizers. A realizer for a propagation ruleA
f⇒ B@g is a set

of components that can each, as a (computable) function of
the history of inputs at its location, recognize, and compute
the valuev of events in classA that occur there and send



messages that will eventually result in an events in classB
with valuef(v) at each location ing(v). We call the classesA
that can be so recognizedprogrammable. Basic event classes
are programmable, and the set of programmable event classes
is closed under a variety ofcombinators. Thus many classes
can be automatically shown to be programmable, and their
recognizers generated automatically, see [Bic09]. IfB is a
basic class and if we havereliable message delivery, then a
component may cause an event inB by placing a message with
an appropriate header on its external part. A rule,A ⇒ B
is programmable-basic(PB) if A is programmable andB
is basic.Under the assumption of reliable message delivery,
every PB-rule is realizable.

Reliable message delivery is an assumption about the envi-
ronment. In this case, the assumption is afairness assumption
on the choices the environment makes, stating that all mes-
sages in the external part of a component will eventually be
chosen. We weaken this assumption by allowing some com-
ponents to suffersend omission faults. Under that assumption,
parameterized by a set of locations,F , called thefail-set, every
message on the external part of a component whose location
is not in F , will eventually be delivered. If send omissions
are allowed, not every PB-rule is realizable, but the restricted
rule A|(¬F ) ⇒ B is realizable, whenA ⇒ B is PB, and
A|(¬F ) is the class ofA-events whose location is not in
the fail-set. A fault-tolerant protocol like TwoThirds can be
described by such restricted rules, and proved correct under
appropriate assumptions on the size of the fail-set. A PB-rule
A⇒ B is also strongly realizable. Some desirable properties
of protocols like consensus do not follow from conjunctions of
PB-rules alone. We also need somepropagation constraints,

of the formA
f⇐ B@g. A realizer constructed forA

f⇒ B@g
will generateB-events only fromA-events, so it will also

realizeA
f⇐ B@g.

III. A TTACK TOLERANCE

We assume that our systems will be attacked. We will
protect protocols by formally generating a large number of
logically equivalent variants, stored in anattack response
library. Each variant uses distinctly different code which a
system under attack can installon-the-flyto replace compro-
mised components. Each variant is known to be equivalent and
correct. We express threatening features of the environment
formally and discriminate among the different types. We can
do this in our new GPM model becausethe environment
is an explicit component about which we can reason.This
capability allows us to study in depth how diversity works
to defend systems. We can implement attack scenarios as
part of our experimental platform. It is interesting that we
can implement aconstructive version[RC08] of the famous
Fischer/Lynch/Paterson result [FLP85] that shows how an
attacker can keep any deterministic fault-tolerant consensus
protocol from achieving consensus.

A. Synthetic Code Diversity

We introduce diversity at all levels of the formal code
development (synthesis) process starting at a very high level
of abstraction. For example, in the TwoThirds protocol, we
can use different functionsf , alter the means of collecting
Msg i, synthesize variants of the protocol, alter the data types,
etc. We are able to create multiple provably correct versions
of protocols at each level of development, e.g. compiling
TwoThirds into Java, Erlang, andF#. The higher the starting
point for introducing diversity, the more options we can create.
We can also inject code diversity into the fully automatic
verification of authentication protocols inProtocol Compo-
sition Logic (PCL) [DDMR07] implemented in our system.
These synthetic diversity techniques generate a large set of
components, each of which is associated with a “genotype”
that describes the parameters (such as choice of algorithm,
choice of data structure, choice of implementation language)
used to generate components of its “species”.

B. Formalizing the Environment

We can precisely describe how diversification and recon-
figuration respond to threatening features of the environment
because we canexpress some threats formallyand discriminate
among the different kinds as is done in theNysiad system
[HvRBD08] to defend against Byzantine attacks. This capa-
bility will allow us to study how diversity defends systems.
For example, we have studiedmessage order attacksin which
the environment delays key messages in consensus protocols
to keep the system from deciding in a timely manner. This is
an instance of the general phenomenon uncovered by Fischer,
Lynch, and Paterson [FLP85] that consensus algorithms can
be systematically defeated, as we discuss next.

a) The Environment as Adversary:The standard version
of the Fischer/Lynch/Paterson theorem is that no deterministic
algorithm can solve the consensus problem for a group of
process in which at least one process might fail. This is a
negative statement, producing only a contradiction, yet implicit
in all proofs is animagined constructionof a nonterminating
execution in which no process decides, they “waffle” endlessly.
It appears that no such explicit construction could be carried
out following the method of the classical proof because there
isn’t enough information given with the protocol.

The key to being able to build the nonterminating execution
is to provide more information, which was done in [RC08]
by introducing the notion ofeffective nonblocking. Effective
nonblocking is a natural concept when protocols are verified
using constructive logic. P is calledeffectively nonblocking
if from any reachable global states of an execution ofP
and any subsetQ of n − f non-failed processes,we can
find an executionα from s using Q and a processPα in
Q which decides a valuev. Constructively this means that
we have acomputable function, wt(s,Q), which produces
an executionα and a statesα in which a process, sayPα

decides a valuev. Theorem (CFLP): Given any deterministic



effectively nonblocking consensus procedureP with more
than two processes and tolerating a single failure, we can
effectively construct a nonterminating execution of it. Let the
function produced by this proof beflpc, then for a consensus
procedure such as theTwoThirds protocol given above and
its nonblocking proofnb, we have that the environment can
useflpc(nb) to create a message-order attack that will prevent
TwoThirds from deciding.

IV. CONCLUSION

We are exploring how to build distributed systems that
are attack-tolerant by design. The key idea is to implement
systems that can respond to attacks by modifying their code
in a provably safe way. We believe that the more code variants
we can produce, the more resistant systems are to attack. We
have found ways to automatically produce many provably
equivalent variants of components using formal synthesis.
Variation arises from different choices made during synthesis.
We start at a very high level of abstraction by formally proving
that specifications are achievable. By starting at such a high
level, we discovered more correct options than possible by
less technically advanced methods. This discovery reveals new
reasons for working formally at high levels of abstraction.

REFERENCES

[ABC06] Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton,
Christoph Kreitz, Lori Lorigo, and Evan Moran. Innovations in Com-
putational Type Theory using Nuprl,Journal of Applied Logic, Elsevier
Science, 428-469, 2006.

[Abr99] Uri Abraham.Models for Concurrency, Gordon and Breach Science
Publishers, 1999.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing, 2nd
Edition, Wiley, 2004.

[Bic09] Mark Bickford. Component Specification Using Event Classes.
Lecture Notes in Computer Science, Vol 5582, 140-155, 2009.

[BC10a] Mark Bickford and Robert Constable Generating Event Logics with
Higher-Order Processes as Realizers, Computer Science Technical Report,
Cornell University, 2010.

[CB08] Robert Constable and Mark Bickford. Formal Foundations of
Computer Security, NATO Science for Peace and Security Series D:
Information and Communication Security,Vol 14, 29-52, 2008.

[CPS93] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The
Concurrency Workbench: A Semantics Based Tool for the Verification of
Concurrent Systems,ACM Transactions on Programming Languages and
Systems, 15, 36-72, 1993.

[RC08] Robert Constable. Effectively Nonblocking Concensus Procedures
Can Execute Forever - a Constructive Version of FLP, Cornell University
Tech Report Ref Number 11512, 2008.

[DDMR07] A. Datta, A. Derek, J.C. Mitchell, A. Roy. Protocol Composition
Logic, Electronic Notes in Theoretical Computer Science, 172, 311-358,
2007.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faculty process.JACM,
Vol 32, 374–382, 1985.

[HvRBD08] C. Ho, R. van Renesse, M. Bickford, D. Dolev. Nysiad: practical
protocol transformation to tolerate Byzantine failures,Proceedings of
the 5th USENIX Symposium on Networked Sys Design and Impl,175-188,
2008.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system,Comm ACM, 21(7), 558-65, 1978.

[Lam01] Leslie Lamport. Paxos made simple,ACM SIGACT News, 4,
December, 2001, 18-25.

[LKvR+99] X. Liu, C. Kreitz, R. van Renesse, J.Hickey, M. Hayden, K.
Birman, R. Constable. Building reliable, high-performance communication
systems from components,ACM Symposium on Operating Systems
Principles (SOSP), ACM Press, 80-92, 1999.

[Lyn96] Nancy Lynch.Distributed Algorithms. Morgan Kaufmann Publish-
ers, San Mateo, CA, 1996.

[Mil09] Robin Milner. The Space and Motion of Communicating Agents,
Cambridge University Press, 2009.

[Win89] Glynn Winskel. An introduction to event structures,LNCS 345,
Springer, NY, 364-397, 1989.


