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Abstract

The key feature of Brouwer’s intuitionistic mathematics is its treatment of the continuum of
real numbers. That type includes real numbers given by computable sequences of rationals
in the style of the 1985 book by Bridges and Bishop, Constructive Analysis. It also includes
real numbers given by free choice sequences of point cores. It is natural to assign a com-
putational complexity cost in the style of Hartmanis and Stearns to real numbers given by
algorithms. However, free choice sequences are not given by algorithms. On the other hand,
in order for a choice sequence to define a real number, the elements of the sequence must be
increasingly better rational approximations to the number. There is a cost parameterized
by the natural numbers to computing these rational approximations. That is one measure
for the computational complexity of the real numbers given by free choice.

This short article establishes a framework for formalizing and investigating this notion of
complexity for computing with Brouwer’s continuum. The fundamental principle about the
intuitionistic continuum is the Continuity Principle. This is perhaps the central principle
of Brouwer’s mathematics, showing that his real numbers are not enumerable, i.e. count-
able, and it contradicts classical real analysis. It allows us to compute with Brouwer’s real
numbers.

1 Background on Intuitionism

Brouwer’s 1907 doctoral thesis was entitled On the Foundations of Mathematics. In it he claimed
that mathematics is not a part of logic. He believed that a formal language is not essential to
mathematics. Computer scientists interested in intuitionism claim that a formal language is
necessary to enable computers to help us perform certain mathematical acts, including formal



proofs about free choice sequences.

Computer science has brought many of Brouwer’s ideas on logic and mathematics to life by
implementing them in proof assistants. Elements of his logic were formalized in our book Im-
plementing Mathematics[15], IM for short. Since the publication of the that book, in 1986, the
Nuprl proof assistant has implemented not only intuitionistic logic but also elements of Brouwer’s
work on analysis and topology. These results have been applied to problems in computer science,
mathematics, applied mathematics and to logic itself. L.E.J.Brouwer has even made significant
contributions to computer science, a subject that did not exist for most of his life, from 1881 to
1966.

In 1986 at Cornell, a dozen members of the PRL research group wrote a book entitled I'm-
plementing Mathematics with the Nuprl Proof Development System [15]. In that book and in
further formal work, we implemented significant elements of Errett Bishop’s book Foundations
of Constructive Analysis [8]. Computers could execute our formal proofs to accomplish tasks in
real analysis. We followed Bishop in adopting many of Brouwer’s ideas, especially in formalizing
intuitionistic logic. Our book is frequently cited even today, 34 years later, in part because of
the success of this methodology.!. We will examine in these notes the case for implementing
as much of intuitionistic mathematics as possible. Brouwer claims that its full range cannot be
implemented, only certain elements can be formalized. We will examine this border.

Dr.Mark Bickford has formalized in Nuprl significant parts of the Bishop and Bridges book, and
we obtained permission from the publishers, Springer Verlag, to link results in that book to his
formalization. This combination created an interesting new paradigm for publishing mathemat-
ics, see http://www.nuprl.org/MathLibrary/ConstructiveAnalysis/ .

Using the Nuprl proof assistant [15] we have implemented not only intuitionistic logic but also
elements of Brouwer’s discoveries in analysis and topology [6, 23, 22, 24, 5]. We have applied
these results to problems in computer science, mathematics, applied mathematics and to logic
itself. In due course these concepts and theorems will be implemented in other proof assistants as
more connections are established to computer science. In this and related ways, L.E.J.Brouwer
has made significant contributions to computer science, a subject that did not exist in his life time.

2 Implementing Elements of Intuitionistic Mathematics

The Cornell Nuprl proof assistant implements intuitionistic type theory enhanced with concepts
developed and implemented in Nuprl since 1984, e.g quotient types, dependent intersection, re-
cursive types and novel types documented in the 1986 book on the theory and its implementation

!The Nuprl book is available on the PRL web page at: http://www.nuprl.org/book/



[15]. As far as we know, there is no other proof assistant that has formalized and implemented
Brouwer’s intuitionistic mathematics enhanced with the types mentioned above. We have called
this theory enhanced intuitionistic type theory.

Recently we defined this theory in the Coq proof assistant [1]. When we are exploring possible
new types and rules we verify their consistency using Coq. We call this a dual-prover technology.
That methodology was independently advocated by the late Field’s Medalist Vladimir Voevod-
sky. All of the Nuprl results are available at the library and web page of the proof assistant,
www.nuprl.org.

We present some of these concepts using the approach called the semantics of evidence [14].
As of 2020 Nuprl remains the only proof assistant that implements the full range of Brouwer’s
intuitionistic mathematics. This implementation was made possible by the pioneering work of
Kleene and Vesley in their book The Foundations of Intuitionistic Mathematics and the work of
the PRL group over the past six years to implement these ideas. Many of the key articles were
published in the Logic in Computer Science (LICS) conference and related venues.

These notes build on our experience transforming the logic of the Nuprl proof assistant from
constructive mathematics in the style of Bishop and Bridges [9] to implementing Brouwer’s in-
tuitionistic mathematics [18, 26, 10, 11, 17, 12, 25, 20, 19, 21], especially including his essential
Continuity Principle, free choice sequences and elements of the Creating Subject arguments [2].
As far as we know, Nuprl is to date the only proof assistant that implements and applies this
range of intuitionistic mathematics. We have reported in the proceedings of the Logic in Com-
puter Science (LICS) meetings and in other publications [7, 23] on the course of our four year
long transformation of the Nuprl proof assistant’s logic from constructive mathematics to in-
tuitionistic mathematics. Many of the conference papers and the Nuprl book are available at:
www.nuprl.org.

3 Calculus and the Real Numbers in Nuprl

In Chapter 2 page 15 Bishop and Bridges [9] define the notion of an operation. They say that
an operation is a finite mechanical procedure. They write f : (A — B) to indicate that f maps
elements from the set A into set B. If the operation f respects the equality on the set A, i.e. if
a =0 in A implies f(a) = f(b) then f is called a function. This wording is essentially the same
as used by logicians. They define a sequence as a function whose domain is the set of positive
integers. Recall their definition of the real numbers repeated here.

Definition 2.1: A sequence of rational numbers g, is reqular if |g, — ¢,| < 1/m+1/n for all m,n
positive natural numbers. A real number is a regular sequence of rationals. We call g, the nth



approximation to the real number.

Two real numbers z,,y, are equal iff |z, — y,| < 2/n. The type of real numbers just defined is
denoted by R. It is easy to see that equality on real numbers is an equivalence relation.

It is noteworthy that Brouwer proposed a wider notion of real numbers. He allows them to be
given by free choice sequences [11, 13]. The choices used to generate the sequence need not be
given by a rule or an algorithm. The rational approximations can be “freely chosen”.

3.1 Brouwer’s real numbers, his Continuity Principle, and Bar In-
duction

Brouwer uses the notion of a point core to define his real numbers. His basic format for a real
number is progressively smaller nested intervals of rational numbers. This rendering is suggestive
where the endpoints of the intervals are rational numbers. The definition evokes the idea of a
“point core” looking like this:
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The matching brackets determine rational intervals of the continuum. Brouwer believed that our
intuition of time gave us the conceptual basis for exploring the mathematical continuum. Weyl
[27] was also interested in connections between the mathematical continuum and the time/space
continuum.

Brouwer’s Continuity Principle is expressed this way in Nuprl [22]. The downward arrow, |,
tells us that the computational content of the proposition following the arrow is hidden, thus not
available for computation. This is not a completely faithful implementation of Brouwer’s notion
because we cannot necessarily find the natural number k. We need to search for it.

Continuity Principle:
VF:R=N.|lVf:R3Ik:NVg:R.(g = fin(R)x) = (F(g9) = F(f))-

The downward pointing arrow, |, tells us that the proof does not explicitly give the value k, we
need to search for it.

Two real numbers are separated, x # y if and only if x < y or y < x.

The arithmetic operations on reals are easy to define, and they make intuitive sense. Here are
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the definitions. We call x,, the n-th approximation to the real number.

1. x4+ y = (x2,) + (Y2n) for each natural number n.
2. x Xy = (Togn) X (Yyon) for all n.

3. max(z,y) = max(z,,y,) for all n.

4. —x = (—x,) for all n.

5. of = (o, ...).

Proposition Each of the above five sequences of rational numbers defines a real number. We
associate with each real number x an integer K, called the canonical bound for x. We define it
as the least integer K, such that the absolute value of the n;, approximation is less than K.

Definition A real number (z,) is positive, writing R™, if x,, > 1/n for some positive n. A real
is nonnegative, say x,eR°" if and only if 2, > —n~! for n a positive integer.

Here is an important theorem about real numbers that is similar to Cantor’s theorem. It shows
that if we have an enumeration of reals, say (a,) and two reals zo and yo such that zo < o, then
we can find a real number x such that zy < z <y moreover, x # a,, for all positive integers n.

Theorem 2.19. Let (a,) be a sequence of real numbers, and let o and o be real numbers such
that ¢ < yo. Then we can find a real number x such that o < z < yy and = # a,, for all natural
numbers n.

The proof of Theorem 2.19 on page 27 of Bishop and Bridges is formalized in Nuprl by Mark
Bickford. The verbatim account from Bishop and Bridges is given in the part of their book which
is posted on-line at the Nuprl web site. The url for the book is given above in the abstract. Here
is an English language version of the theorem.

Theorem 2.19 in English: Given a sequence of real numbers aq, as, as, ... and given a proper non-
empty closed interval of the reals, we can effectively find another real number z in this interval,
different from all of the a;.

This is a constructive version of Cantor’s Theorem that the real numbers are uncountable in the
sense that we can find a real number a not on this list. Brouwer gave a very different proof that



the intuitionistic reals are uncountable. We look at that next.

Brouwer created an account of the continuum of the intuitionistic reals using his concept of a
universal spread. Spreads are trees with infinitely many branches from each node and all of
whose branches are infinite in length. The universal spread allows the paths in the tree to be
given by arbitrary free choices as well as by rules. The universal spread contains all possible
sequences of natural numbers, some given by laws and some created freely. The spread has an
uncountable number of nodes. Indeed, the universal spread is the basis for Brouwer’s notion of
the continuum. He provides a simple argument that the universal spread is uncountable. So we
conclude that the continuum is uncountable without employing a diagonalization argument.?

We list some properties of the universal spread to start building up our knowledge of this central
concept in Brouwer’s intuitionism. The elements of a spread are sequences of natural numbers.
They can be given by a rule describing for any natural number n the n-th element of the sequence.
They can also be given by free choice, the n-th element is freely chosen, say by a creating subject.
Some sequences might be finite because there is no means given for extending them further. The
choice law determines the spread. Indeed Brouwer did not think of the spread as the collection
of its elements but as the law determining how the choices are made.

Brouwer created an account of the continuum and the intuitionistic reals using his concept of
a universal spread. Spreads are trees with infinitely many branches from each node and all of
whose branches are infinite in length. The universal spread allows the paths in the tree to be
given by arbitrary free choices as well as by rules. The universal spread contains all possible
sequences of natural numbers, some given by laws and some created freely. The spread has an
uncountable number of nodes. Indeed, the universal spread is the basis for Brouwer’s notion of
the continuum. He provides a simple argument that the universal spread is uncountable. So we
conclude that the continuum is uncountable without employing a diagonalization argument.?

We list some properties of the universal spread to start building up our knowledge of this central
concept in Brouwer’s intuitionism. The elements of a spread are sequences of natural numbers.
They can be given by a rule describing for any natural number n the n-th element of the sequence.
They can also be given by free choice, the n-th element is freely chosen, say by a creating subject.
Some sequences might be finite because there is no means given for extending them further. The
choice law determines the spread. Indeed Brouwer did not think of the spread as the collection
of its elements but as the law determining how the choices are made.

There is a special spread called the universal spread consisting of all infinite sequences of natural

2Joan Rand Moschovakis provides a YouTube presentation of free choice sequences with the title:“A Logical
Look at Kripke’s idea of free choice sequences”.

3Joan Rand Moschovakis provides a YouTube presentation of free choice sequences with the title: “A Logical
Look at Kripke’s idea of free choice sequences”.



numbers, N. We denote this spread as A. The choice law for this universal spread allows any
choice of a natural number at each step of creating an element, i.e. a sequence. The universal
spread includes all sequences of natural numbers no matter how they are created, by law or free
choice. Brouwer showed that A is uncountable by essentially the argument we give now.

In order for a function, say « to be defined on any spread, the value it takes on each sequence as
input must be determined by an initial segment of that sequence, say the values up to number
y. This function o must take the same value on any sequence that has the same initial segment,
say a function 5. But we can arrange that at a larger value, say y+ 1, a(y+1) # 5(y +1). This
means it is impossible to map A onto N in a one-to-one way. Consequently, the universal spread
A is not enumerable. It is uncountable. Brouwer proved this without using diagonalization.

The intuitionistic continuum is a special spread. We describe it now. I relies on the notion of
point cores that we defined above.

It is not practical to draw the universal spread as a tree because of the large branching factor.
The root must connect directly to all natural numbers and so must the interior nodes. We can’t
diagram that as a tree, although a spread is usually shown that way. It can also be seen as a
co-recursive type.

The intuitionistic continuum R is a special spread. We describe it now. It relies on the notion
of point cores that we defined above.

It is not practical to draw the universal spread as a tree because of the large branching factor.
The root must connect directly to all natural numbers and so must the interior nodes. We can’t
diagram that as a tree, although a spread is usually shown that way. It can also be seen as a
co-recursive type.

Theorem: (Vo : R.(z #0=2<0Vz>0)).

Proof: We need a proposition A that is known not to be testable. Brouwer meant that we
do not have a proof of (wAV =—=A). We could take A to be P = NP. This is a famous open
problem in computer science about polynomial time computation done deterministically, i.e. in
P or non-deterministically, i.e. in NP. We do not know whether P = NP or (P # NP). This
proposition is non-testable as of July 2019. So we know (P = NP)V (P # NP). This is the
same as —(P # NP)V (P # NP). Next we define a choice sequence r of rational numbers with
these three properties.



e Aslong as by the time we choose r(n) the creating subject has not found evidence for either

P =NPor (P # NP),define r(n) tobe 0. That is (P # NP)A(=~(P # NP))) = (r =0).

e If between the choice of r(m — 1) and r(m), the creating subject has found evidence for
P = NP, then choose r(n) for all n > m to be 27™.

e If between r(m —1) and r(m) the creating subject has evidence for (P # N P), then choose
r(n) = —(27™) for all n > m.

We can see that r is a real number since it converges. Furthermore, we defined it to satisfy
(r=0)< ((P# NP)A—-(P # NP). So the creating subject knows r # 0.

So the creating subject can reason that there never was evidence for P = N P, and indeed,
none for (P # NP). So P = NP has been tested. By symmetry, if r > 0, i.e.=(r < 0),
then there is never evidence of (P # NP), hence =(P # NP).

Hence P = NP has been tested, contradicting the assumption that it has not been tested.
Therefore we know that » < 0V r > 0 cannot be proved. Qed

4 Conclusion: What the Future May Hold

Computer science, as a relatively young discipline is making considerable progress in help-
ing mathematicians and computer scientists solve open problems and discover new ones.
Proof assistants are a critical technology in this kind of research. That fact was very well
understood by the Fields Medalist Vladimir Voevodsky who turned to computer science to
help validate his ideas in homotopy theory. In particular he sought assistance in proving
what he called his Univalence Azxiom. This axiom is critical to understanding equality in
homotopy theory. His conjecture was confirmed at Cornell by Mark Bickford working with
Voevodsky using the Nuprl proof assistant [4]. The PRL research group has been enrich-
ing and applying the Nuprl proof assistant since 1985 [15], for over thirty four years with
at least 30 PhD students working on and with the system along with a strong technical
support staff including Richard Eaton, Anne Trostle, and Sarah Sernaker.

The Nuprl developers and researchers now use a dual prover architecture with the Coq
proof assistant [3]. Coq is used to insure that the Nuprl rules are formally sound and that
extensions of Nuprl preserve soundness. This capability helps extend the scope of Nuprl’s
reasoning power, applications, and discoveries.

Hermann Weyl’s 1918 book in German, Das Continuum [27], was another approach by a
highly respected mathematician to understand the continuum more deeply. Initially Weyl
was very sympathetic to Brouwer’s ideas, but he became interested in what is called pred-
1cative mathematics. His work has not made the same deep and broad impact as Brouwer’s.



We end with a comment on the role of Artificial Intelligence (Al) in proof assistants.
Stephen Hawking [16] said the following in a popular article on Al : “Success in creating
ATl would be the biggest event in human history.” Computer science is well on its way to
creating ever stronger Al methods. We already see benefits of progress in Al over the past
five years in helping formalize elements of intuitionistic mathematics. I believe that a small
one of them is an elegant result by Mark Bickford on the continuum, Connectedness of the
continuum in intuitionistic mathematics, which Nuprl helped him discover and formalize.
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