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Chapter 1

Introduction

1.1 Purpose

This manual is a reference manual for version 4.1 of the Nuprl system. It is aimed at beginning
and intermediate users of the system. Version 4.1 runs on Unix-based workstations that use the X

window system.

Note that this manual is still under development and is incomplete. Most importantly, it is
missing information on Nuprl’s type theory, and the structure of the primitive rules as perceived
by users when executing low-level tactics.

Information on the ML language can be found in a separate Nuprl ML manual. Tutorials on
the use of Nuprl’s term and proof editor are also available.

1.2 Conventions

We give the conventions we use in this manual for presenting user input and Nuprl output.
Input which you should type is presented typewriter font. For example this is in typewriter
font. The following symbols are also used:

. for the space-bar.

. for the return key (sometimes marked as “enter”).
. for the linefeed key.

° for the tab key.

° for the delete key (sometimes marked as rubout). On some keyboards the
has the same effect.

. for the left mouse button.

e MOUSE-MIDDLE| for the middle mouse button.

for the right mouse button.

Modified keys are presented as follows:



(c-z) read as “control z”. Hold down a control key and simultaneously press key z.

(M-z) read as “meta 2”7. Hold down a meta key and simultaneously press key z.

(cM-z) read as “control meta z”. Hold down both a control key and a meta key, and simul-
taneously press key z.

o (s-z) read as “shift 2”. Hold down a shift key and simultaneously press key z.

Note that zis either a keyboard key or a mouse button; for example both (c-a) and (M-
) are valid modified keys.. On some keyboard’s (for example, those of Sparc-stations) the usual
meta keys are the keys marked < either side of the space-bar. The (s-z) modifier is only used with
non-printing characters (for example, RETURN] ).

When we say “click MOUSE-LEFT]” on some part of a window, we mean that the mouse cursor
should be pointed at that part, and then the button should be pressed.

Be aware that Nuprl can be quite slow to respond to keystrokes, sometimes taking several
seconds. Don’t hold keys down till you get a response. You might easily make the keys autorepeat,
which could be rather annoying.

For clarity when presenting input which a user might type, or output which Nuprl generates, we
sometimes enclose the input or output text in special "7 quotes. For example "this is example
output .

Some cursors in Nuprl highlight a part of window. The highlighting is indicated on the screen
by swapping the foreground and background colors of the display. For example, if normally the
display has black characters on a white background , then a highlighted part has white characters
on a black background. In this document we indicate a highlighted region of the screen by drawing
an outline around it. For example, in the window

ML top loop

H

M>

[int] * [int]

)

the [int] * [int] is considered to be highlighted.

1.3 Practical Details

1.3.1 Getting Set Up

The Nuprl system is written in a combination of Common Lisp and an older dialect of ML. We
assume here that your Nuprl administrator has already done the following:

1. Installed the Nuprl directories and compiled the various Nuprl files.

2. Compiled the Nuprl Lisp and ML files and created a Lisp image (disksave) that has these
files loaded as well as some initial Nuprl theories.

3. Set up a shell script that both starts up this Lisp image and starts up Nuprl’s window system.
Below, we assume that the alias nuprl has been set up for this script.



4. Installed the Nuprl font files for X in some directory FONT-DIR where your workstation can
access them.

To set-up, do the following;:

1. Add the following lines to the start of your .xinitrc after any initial comments (in particular
after the first line if it starts #! /bin/csh).

xset fp+ FONT-DIR
xset fp rehash

These commands tell X the font path to the nuprl fonts. The first time you run Nuprl you
should also run these commands interactively in some shell to add the font path to your
current X environment. The current Nuprl fonts in order of size from smallest to largest are
named nuprl-8x13, nuprl-13 and nuprl-20. If you want to look at one of the fonts, use the
xfd command. For example, run in a shell:

xfd -font nuprl-13 &

2. Familiarize yourself with some editor that supports 8-bit fonts and has a capability for starting
sub-shells. For example, lucid-emacs, epoch and emacs version 19. Vanilla 18.xx versions
of emacs do not support 8-bit fonts, although there are several 8-bit patches available. You
should run this editor with one of the nuprl fonts.

Such an editor is not strictly necessary, but is a good idea for several reasons:

e Nuprl frequently writes output to Lisp’s ‘standard output’ which is almost invariably
the same window as that which Nuprl is started up from. If Nuprl is started up from an
editor sub-shell, it becomes easy to review this output and save portions of it to files.

e This output is in Nuprl’s 8-bit font.

o Listings of theory files use Nuprl’s 8-bit font. These files contain definitions, theorems
and proofs, and it is often useful to be able to browse them.

1.3.2 Starting Up

We assume you have set things up as described in the previous section.

e Start up the 8-bit emacs you have chosen to use.

o Start a sub-shell. For emacs-related editors type

(M-x)shell RETURN]

e In the sub-shell, start up nuprl. Type:

nuprl RETURN



It will take a few seconds for Nuprl to start up. When it does, Nuprl’s two main windows, the
ML-Top-Loop window and the Library window should open up on your display. The ML-Top-Loop
window should look like

ML Top Loop

lVI>|;;

The Lisp underlying Nuprl is running in the window in which you typed nuprl. Since output from
the ML Top Loop and error messages are written to this window, it is a good idea to keep it visible.
Nuprl is now ready for use.

1.3.3 Hints on Using the System

Nuprl’s windows are at the “top-level” in the X environment. The windows can be managed
(positioned, sized, etc.) in the same way as other top-level applications such as X-terminals.
Creation and destruction of Nuprl windows, and manipulation of window contents, is done solely
via commands interpreted by Nuprl. Nuprl will receive mouse clicks and keyboard strokes whenever
the the input focus is on any of its windows. Exactly one window is “active” at any given time;
this window is identified by the presence of Nuprl’s cursor. This appears either as a vertical bar or
as a highlighted region. The specific location of the cursor determines the semantics of keyboard
strokes and mouse clicks, and is independent of the location of the mouse cursor.

The two main windows — the ML-Top-Loop window and the library window — remain through-
out the session and you cannot create new versions of them. Chapter 2 describes use of the ML-Top-
Loop window and Chapter 3 describes the format of the library window. Chapter 3 also describes
the kinds of objects that can be found in the library.

There are two other kinds of windows; term editor windows and proof editor windows. Both are
used for editing objects in the library. Terms and the term editor is described in Chapter 4 and
the proof editor is described in Chapter 7.

Most Lisps allow computations to be interrupted. This is usually done by sending (c-C) to the
Lisp process. (If Lisp is started up from an emacs sub-shell, you usually can do this by typing
(c-C)(c-C) to the sub-shell window). This will cause Lisp to enter its debugger, from which the
computation can be resumed or aborted. Aborting Nuprl is almost always safe. When Nuprl is
restarted, the state should be exactly as it was when Nuprl was killed, except that any computations
within Nuprl will have been aborted.

See Chapter A for how to use the Lisp debugger, and in particular, for what to if Nuprl crashes.
Nuprl is a continually-evolving experimental research system, and it is inevitable that it will contain
bugs. Please report any behavior you think is due to a bug, or inconsistencies between the operation
of the system and the documentation. Also report any break-points that you hit; they have either
been left in the code accidentally, or they are there to help track down the source of bugs. We
welcome suggestions for improvement. Send e-mail to nuprlbugs@cs.cornell.edu.

If the system appears to be inexplicably stuck, check the window running Lisp; it is very possible
that Lisp is garbage-collecting. This sometimes takes a few minutes.



1.3.4 Exiting

When you are ready to stop, click in the ML-Top-Loop window, and enter (c-z).
This should give you a Lisp prompt (>) in the shell from which you started up Nuprl. To exit Lisp,
enter

(quit)

in this window. It is important that you explicitly type quit, rather than just for example quit out
of the editor Nuprlis running under. In the latter case, the Lisp process can be left floating around
in a hung state, hogging memory resources. (This could also happen if your editor crashes). You
can use the Unix command ps to check for a hung Lisp and the command kill to kill it.

1.3.5 Alternative Setups

Intermediate and experienced users will probably want to create their own initialization procedures
for Nuprl. These could allow customizations such as:

e Changing the initialization of Nuprl’s X windows.

e Changing key-bindings for the term and proof editors.
e Loading more / different theories.

e Loading more / different tactics.

Depending on how significant the changes are, these initialization procedures could be run after
starting up some pre-prepared disksave, or after starting up an plain Lisp process. Users can of
course too make their own disksaves for future use.

To get an idea of how you might set up an initialization procedure, look at the files in the
sys/utils/ directory. You probably will want to put all your initialization commands into a Lisp
file that is automatically loaded whenever a plain Lisp image or disksave is started up.

Note that Nuprl runs in the nuprl package. All symbols entered in Lisp will be interpreted
relative to this package. The package inherits all the symbols of Common Lisp, but does not
contain the various implementation-specific utilities found in the package user (or common-lisp-
user). To refer to these other symbols, either change packages using (in-package "USER"), or
explicitly qualify the symbols with a package prefix. If you change packages, you can change back
to the Nuprl package using (in-package "NUPRL").

If you plan to do significant amounts of programming in Lisp, you might want to look into using
Lisp sub-shell packages such as ILISP rather than vanilla sub-shells.

1.4 Customization

1.4.1 Window System Options

The Lisp function change-options can be used to set various parameters affecting Nuprl’s window
system. The change-options function takes an argument list consisting of keywords and associated
values. For example, to set the options :host and :font-name to moose and nuprl-20 respectively,
put the form

10



(change-options :host "moose" :font-name 'nuprl-20")
in your init file. The options, together with their default values (in parentheses) are given below.

host (NIL). The host where Nuprl windows should appear.
:title-bars? (NIL). If T then Nuprl will draw its own title bars.

:host-name-in-title-bars? (T). If T, then the title of each window will include a
substring indicating what host the Lisp process is running on.

:no-warp? (T). If T then Nuprl will never warp the mouse. (Mouse warps apparently
annoy some users.) In environments where the position of the mouse determines input
focus, setting this option to NIL will guarantee that Nuprl retains input focus when
windows are closed.

:frame-left (30), :frame-right (98), :frame-top (30), :frame-bottom (98). Each
of these should be a number between 0 and 100. They give the boundaries, in terms
of percentage of screen width or height, of an imaginary frame within which Nuprl will
attempt to place most new windows.

:font-name ("nuprl-13"). The name (a string) of a font to use for the characters in
Nuprl windows. Nuprl uses a special 8-bit font. Currently two are available: nuprl-13
and nuprl-20.

:cursor-font-name ("cursor"), :cursor-font-index (22). The name of the font to
use for the mouse cursor when it is over a Nuprl window, and an index into that font.
The default font should always be available.

:background-color ("white"). The color for the background in Nuprl windows. The
value must be a string argument naming a color. Any color in the X-server’s default
colormap may be used. Nuprl will get a Lisp error (entering the Lisp debugger) if the
color does not exist.

:foreground-color ("black"). The color for characters etc. in Nuprl windows.

1.4.2 Editor Options

The key bindings for the term and proof editors can be altered by creating your own key macro
files and loading them instead of the standard ones in a Lisp initialization file.

1.5 Directory Structure

Nuprl is currently maintained with the help of the CVS version control system. All the Nuprl code
resides in a single CVS module called nuprl4. The main parts of the directory structure as of
January 29th 1994 are as follows:

11



Directory Contents

1lib/

1ib/ml/ All ML code

1ib/ml/standard/ Standard ML source functions and tactics
lib/theories/ All Nuprl Theories

lib/theories/standard/ | Basic Theories
lib/theories/algebra/ | Abstract Algebra Theories

lib/theories/reals/ Real Analysis Theories
sys/ All Lisp code

sys/ml/ Lisp for ML compiler and interpreter
sys/prl/ Lisp for Editors and Refiner
sys/utils/ Utilities for loading system
macro/standard/ Editor customization

doc/ Documentation

doc/man/ This Reference Manual
doc/ml/ Nuprl ML Manual
doc/tutorials/ Introductory Tutorials
doc/sys/ System documentation

All directories should eventually contain a =README file that describe their contents.

1.6 Learning to use the System

1.6.1 Tips

A few tips are as follows:

o We recommend that you run through the Nuprl term and proof editing tutorials before trying
to do anything else with the system.

e The Nuprl ML manual contains a tutorial in the use of ML. Use this as an introduction to
ML.

e In learning the proof and term editors, check out all the mouse commands. Many editing
operations can be done most easily with the mouse.

e Familiarize yourself with where Nuprl theories are kept and how they are organized. (See
Section 1.5 and Section 10.1.) Existing theories are an excellent resource for learning about
how to do proofs. In particular, you can use the Unix grep command to search theory listings
to find examples of uses of tactics you are curious about.

We recommend that fairly early on, you at least browse through this manual, familiarizing

yourself with the general contents of each chapter. This will help you know where to look if you
have questions.

12



1.6.2 The Nuprl Book

The Nuprl book I'mplementing Mathematics with the Nuprl Proof Development System, Constable
et al, published in 1986, is still a good background reference. However, the system has changed
sufficiently that none of the tutorials given in the book will work in the current system. The
“reference” portion, excluding the parts of Chapter 8 on the type system and its semantics, is
superseded by this reference manual. Chapter 9 in the reference portion also contains some useful
examples and discussions of tactic writing that are not reproduced here. The “advanced” portion
of the book deals with application methodology, gives some extended examples of mathematics
formalized in Nuprl, and also describes some extensions to the type theory which have not been
implemented.

Substantial changes have been made to Nuprl since the book was written. The most major ones
are:

e An X-windows interface has been added.

All Nuprl terms now have a uniform term structure.
¢ Rules are now alterable library objects, rather than being hard-wired.

New display form and abstraction facilities replace the old definition facility.

A substantial tactic collection has been added.

ML utilities have been added to format library and proof listings for Latex.

13



Chapter 2

ML Top Loop

2.1 Introduction

The ML Top Loop provides an interactive interface to ML. You can use it to evaluate ML expressions
and declarations. Specific Nuprl-related uses for the ML Top Loop include:

1. controlling the library window,

2. loading and dumping theories,

3. editing library objects,

4. exploring the Nuprl state,

5. experimenting with Nuprl functions.

6. loading ML files,

The ML-Top-Loop runs in its own Nuprl window which is created when Nuprl is started up.
This window is a term editor window, so most of the commands described in Chapter 4 work in it.

The rest of this section is divided in two. The first part introduces you to the ML Top Loop,
and tells you enough about it to get started with the Nuprl system. This part does not assume
familiarity with Chapter 4. It should be sufficient for you to work through the ML examples in the
tutorial section of the Nuprl MLL Manual. The second part describes in more detail the functionality
of the top loop, and does assume you have some familiarity with the contents of Chapter 4.

2.2 Basic Top-Loop Operation

Initially the top loop window looks like:

ML Top Loop
lVI>|;;
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The M> is the ML prompt. The ;;’s are the usual termination characters for ML expressions and
declarations. The top loop always supplies these; you never have to type them yourself. The | is
the cursor. To differentiate it from other kinds of cursors we call it a text cursor. You can type
text whenever you have a text cursor. Other kinds of cursors are screen cursors and term cursors.
These have redily distinguishable appearances; a screen cursor outlines a single character, and a
term cursor highlights a region of the screen.

The basic top loop commands are summarized in Table 2.1.

x INSERT-CHAR-Z insert character z
ML-EVALUATE call ML evaluator
(S-RETURN|) | INSERT-NEWLINE add line-break
SET-POINT-TO-MOUSE | move cursor to mouse position
(c-F) SCREEN-RIGHT move cursor right 1 character
(c-B) SCREEN-LEFT move cursor left 1 character
(c-P) SCREEN-UP move cursor up 1 character
(c-N) SCREEN-DOWN move cursor down 1 character
(c-D) DELETE-CHAR-RIGHT | delete char to right of cursor
DELETE DELETE-CHAR-LEFT delete char to left of cursor
(c-R) ML-HISTORY-PREV scroll back through history
(M-R) ML-HISTORY-NEXT scroll forward through history
(c-Z) EXIT-TOP-LOOP return to Lisp Listener

Table 2.1: Basic Top Loop Commands

For convenience, many of the key bindings for the basic commands have been made similar to
those used in emacs. Some of these bindings are context senstive; specifically the INSERT-CHAR-z,
ML-EVALUATE, INSERT-NEWLINE,DELETE-CHAR-RIGHT and DELETE-CHAR-LEFT all rely on there
being a text cursor.

Output from evaluation is usually printed out to the shell from which Nuprl has been invoked.
For this reason you will want to keep the shell window visible and perhaps immediately above the
ML-Top-Loop window.

To evaluate an ML expression, type in the expression at a text cursor, just after the M> prompt,
and then use ML-EVALUATE. For example, if you type:

2+2RETURN

Nuprl responds by evaluating the expression, and printing to the prl-shell the value of the expression
(4) and its type (int):

M> 2+2 ;;
4 : 1int

To correct input you type, use the DELETE-CHAR-BEFORE and DELETE-CHAR-AFTER commands.
To move the cursor around, you can use SCREEN-UP,SCREEN-DOWN,SCREEN-LEFT and SCREEN-
RIGHT. Alternatively you can use the mouse: To get a text cursor between two given character
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positions, click with the mouse pointing at the character position to the right. Using
the cursor motion commands you will doubtless encounter the other kinds of cursors. Nuprl uses
these other cursors when a text cursor is inappropriate. These cursors don’t destructively modify
the display. If you get one, continue to use the SCREEN-* commands or to get back
to a text cursor.

To get a continuation line for a command, key (s-[RETURN]). The continuation prompt is >.
For example, if you entered:

1+2+(s- RETURN] )3+4

you would get:

ML Top Loop
M> 142+
> 3+4|;;

The continuation prompt behaves much like a character, in that you can use the DELETE-CHAR-*
commands to delete it.

The ML Top Loop maintains a command history going back to the start of a session. Use the
ML-HISTORY-* commands to scroll back and forth through the history.

To exit the ML Top Loop and return to Lisp, use the EXIT-TOP-LOOP command.

Occasionally you can get the ML Top Loop into an unexpected state. In this case, you can
re-initialize the ML-Top-Loop window by deleting the existing term in the window, and then using
the INITIALIZE command. The keystroke sequence for doing this from any position in the window
is (M-<)(cM-K)(cM-I). This will not disrupt your command history.

Nuprl error messages are both output to the shell and for convenience displayed in highlighted
text in the ML-Top-Loop window. These messages don’t change the contents of the window in
any way, and any keystroke or mouse-click directed at the ML-Top-Loop window causes the error
display to go away.

FErrors can come from various sources. For example, a message is generated if you type an
expression for evaluation into ML Top Loopand the expression doesn’t parse or type-check prop-
erly. In this event, the most appropriate keystroke is ML-HISTORY-PREV to recall the incorrectly
entered expression. Error messages are also created when, during the course of evaluation of an
ML expression, an exception is generated and uncaught.

Similar error messages appear in rulebox windows when something goes wrong with the entry or
evaluation of a tactic. In this case, harmless keystrokes to use to make the message vanish include
the screen motion commands and MOUSE-LEFT].

2.3 More Advanced Top-Loop Operation

The ML-Top-Loop is configured to support in general a sequence of ML, prompts. Prompts can be
inserted and deleted using the usual sequence commands described in Section 4.4.6.

With more than one prompt, there are several alternatives for evaluating an ML expression.
The relevant commands are summarized in Table 2.2.
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ML-EVAL-SCROLL-UPDATE
(C-RETURN]) | ML-EVAL-SCROLL
(M-RETURN]) | ML-EVAL-UPDATE
(CM-RETURN]) | ML-EVAL

Table 2.2: Additional Top Loop Commands

the effect of (now ML-EVAL-SCROLL-UPDATE) is to evaluate the ML text in the prompt
containing the cursor, echo the result of the valuation in a field just beyond the prompt, and then
scroll the sequence up one prompt so that the topmost prompt is deleted and a fresh prompt is
added at the bottom.

ML-EVAL-SCROLL is like ML-EVAL-SCROLL-UPDATE except that the result of evaluation is not
reported. This is useful when for instance you don’t care about the value of the evaluation, or
the display of the result would be rather large and would undesirably alter the formatting of the
ML-Top-Loop window.

ML-EVAL-UPDATE is like ML-EVAL-SCROLL-UPDATE except that the prompt sequence isn’t scrolled.

With ML-EVAL the ML expression at the prompt is evaluated and left in place. The output
isn’t inserted after the prompt and the prompt sequence is not scrolled.

The above commands can be used to evaluate the ML expression at any ML prompt in a prompt
sequence, not just the last one. New output text generated by evaluating a command overwrites
old output text.

The result of every ML expression evaluation is always also echoed to the shell window from
which Nuprl is started up. Also, every evaluated expression is still always inserted onto the history
list and still always can be retrieved using the history scrolling commands.

2.4 Alternative Top Loops

If the lisp file ml1-cmd is loaded at a lisp prompt in the shell window before starting up Nuprl’s
window system (or after resetting it by evaluating the Lisp expression (reset) ), then starting up
Nuprl does not cause the creation of an ML-top-loop window, and instead, an ML top loop to be
established in the shell window.

The ML prompt in the shell is ML> . ML expressions typed at this prompt should be terminated
with ;; to have them evaluated.

Input focus must be manually transferred between the shell window and Nuprl’s own windows:
to transfer from the shell to Nuprl, use x RETURN]. To transfer back, use TAB]. To move from
Lisp to the ML prompt, evaluate (nuprl) at the Lisp prompt as before, and to move back to Lisp,
evaluate exit () at the ML prompt.

Of course, none of the term-editing facilities are available at this ML prompt.

Though rather rudimentary, this top loop is sometimes useful. For example, when developing
ML code, ML expressions and declarations for evaluation can be cut and pasted into this top loop.

To work with both kinds of top loop, view the comment object cmd. This contains an ML
prompt term, and functions virtually exactly as the term-editor top loop described above.

In general, ML prompt terms can be copied into other term editor objects, and they still
function as top loops. It is straightforward to set up objects that contain sequences of prompts
already initialized with frequently evaluated ML expressions.
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If you want to switch back to having a dedicated top loop window and no top loop in the shell
window, then reset Nuprl, load the file ml-edit-cmd and restart Nuprl.
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Chapter 3

The Library

3.1 Introduction

Nuprl’s library is a mathematical and logical database. The library is composed of objects. There
are objects for theorems and definitions, and also for example objects which control the visual
appearance of the mathematical notation. See Section 3.2 for a list of object types.

Library objects are grouped into theories. Every object belongs to exactly one theory. As
yet, there is no nesting of theories. The dependencies of theories on one-another forms a partial
order. Within each theory, objects are ordered linearly. The dependencies of library objects on one
another is discussed more in Section 3.5. Theories are kept in files. In a Nuprl session, one usually
loads into the library only those theories that one needs to reference. These theories would include
the theories of immediate interest together with the all the ancestors of those theories.

The library window shows information on a segment of the library. The format of the window
is discussed in Section 3.3. Commands for controlling the library window, editing the library and
loading and dumping theories are discussed in Section 3.4.

Note that proofs are stored in a compressed format in files, and expansion of proofs loaded from
files is only on demand. Expansion can often be quite slow. See Section7.7 for details.

3.2 Objects

There are seven kinds of objects:

rule
A rule object defines a primitive rule of the object logic.

theorem
A theorem object contains a proposition and a proof. If the proof is complete, the proposition
is a theorem. If incomplete, a conjecture. A proof maybe compressed or expanded. Theorems
are sometimes referred to as lemmas. A theorem object for a complete theorem also contains
the extract term of the theorem.

abstraction
An abstraction object introduces the definition of a new term.
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ml
An ml object contains ML code.

display
A display object defines display forms for primitive terms and abstractions.

precedence
A precedence object assigns precedences for terms. Precedences control the automatic paren-
thesization of terms.

comment
A comment object contains a comment. Comments have no logical significance.

Theorem objects are discussed more in Chapter 7?7 and the rest of the kinds of object are
discussed more in Chapter 4.

Every object has associated with it a status, either raw, bad, incomplete or complete, indicating
the current state of the object. A raw status means an object has been changed but not yet checked.
A bad status means an object has been checked and found to contain errors. An incomplete status
is meaningful only for theorem objects and signifies that its proof contains no errors but has not
been finished. A complete status indicates that the object is correct and complete.

3.3 Library Window

The library window displays a linear segment of the library, one object per line. When theories are
loaded into the library, they are always placed in a linear order.
An example library display is shown in Figure 3.1. From left to right each line contains:

status
One character: ? for raw, - for bad, # for incomplete and * for complete.

kind
One character: R for rule, t and T for theorem, A for abstraction, M for ML, D for display, L
for lattice (the old name we used for the precedence object) and C for comment. The lower
case “t” is used for compressed theorems and the upper case “T”for expanded theorems.

name
The name of the object.

summary
The first few characters of the object’s contents.

3.4 Library ML Functions

These functions are all most commonly typed in at the ML Top-Loop. One is free to define
abbreviations or alternative ML functions in terms of these primitives ! The functions take the
following kinds of arguments:

!The user should consult the ML file commands.m1 for details on writing his or her own library functions.
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Library @ leo
*C num_thy_1 begin #kkkkskkskkk NUM_THY 1 skrkoksokokskoksksk k.

*D divides.df <b:int:*> | <a:int:*>== divides{}(<b>;

*A divides b | a==3dc:Z. a=b *c

*t divideswf Va:Z. Vb:Z. (a | b € P{1})

*t comb_for divides wf (Aa,b,z.a | b) € (a:Z — b:Z — |{True} — P{1})
*t zero.divs_only zero Va:Z. 0| a=a=0

*t one_divs_any Va:Z. 1| a

*t any._divs_zero Vb:Z. b | 0

*t dividesinvar 1l Va:Z. Vb:Z. a | b&= -a | b

*t dividesinvar 2 Va:Z. Vb:Z. a | b&= a | -b

*t divisorsbound Va:N. Vb:Nt. a | b =a<b

*t divides of _absvals Va:Z. Vb:Z. lal | Ibl<= a | b

*t dividesreflexivity Va:Z. a | a

*t divides_transitivity Va:Z. Vb:Z. Vc:Z. a |l b=>Db | c=alc

*t divides antisymn Va:N. Vb:N. a | b=b| a= a=»>D

*t divides_anti_sym Va:Z. Vb:Z. alb=>bla=>a==xb

*t divisorof sum Va:Z. Vbl:Z. Vb2:Z. a | bl = a | b2 = a | bl + b2
*t divisoroofmul Va:Z. Vb:Z. Vc:Z. b= alb*c

a |
*t dividesmul VYa:Z. Vb:Z. a | b = (Vn:
*t divisor_bound Va:N. Vb:NT. a |
*t divides_iff remzero Va:Z. Vb:Z°.

Figure 3.1: The Library Display Window

obname
An ML string. The name of an object. Acceptable names are composed from the alphabet
"a—zA—Z20—9_". The first character should be a letter.

place
An ML string. The name of an object. The library position understood is immediately before
the object named. "last" may be used to refer to a fictitious object after the last object in
library.

A non-negative number.

O
This is the unique inhabitant of the ML type unit.

Remember that ML strings are always enclosed in """ characters, and that ML functions are
always terminated by "; ;7. Some commands take lists as arguments; ML Lists are delimited by
"[J’s" and use " ;" to separate items. Further utility functions related to the library are described
in Appendix 777.

3.4.1 Library Window Motion

jump obname
Position object obname at the top of window.
up n
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Scroll window up n lines.
down n

Scroll window down n lines.
top ()

Position window at top of library
bottom ()

Position window at bottom of library

3.4.2 Library Editing

view obname
The object obname is displayed in a new window. If the object is not already being viewed
the new view will be fully editable; otherwise, it and all other views of the object will be made
read-only. The header line of the view will say SHOW for a read-only view and EDIT for an
editable view.

The editor used depends on the kind of object. The proof editor is used on theorem objects,
while the term editor is used for all other objects. For more information on the proof editor see
Section 7.6 and on the term editor, see Section 4.4

If view is used on a theorem object with an compressed proof, expansion of the proof is forced.
This may take some time, especially if the proof is large.
create_rule obname place

create_thm obname place

create_abs obname place

createml obname place

create disp obname place

create_com obname place

create_lat obname place
Create new objects of the appropriate kind with name obname, and position it before object
place.

rename old-obname new-obname
Rename object old-obname to new-obname.

delete obname
Delete object obname from the library.

delete objects from-obname to-obname
Delete the range of objects from from-obname to object to-obname inclusive.

check obname
Check object obname. If necessary, the library window is redisplayed to show the object’s new
status.

Checking a rule, abstraction, precedence or display form object causes the object’s contents
to be verified. See Section 7?? for a description of what verification involves. If the object is
well-formed, it is incorporated into the Nuprl environment.

When is checking necessary??2? After all one always checks on loading and exiting an object...

Checking an ML object invokes the ML reader on the object’s contents.
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Checking a theorem object, forces expansion of its proof, if the proof was initially compressed.
Note that this might take a while. See Section7.7 for details.

What is effect on extraction?%?

Checking a comment object has no effect, other than to change the status of a raw comment
object to complete.

check objects from-obname to-obname
Check from object from-obname to object to-obname inclusive. Stop if the status of any object
changes on checking. This prevents a cascade of further status changes which might be caused
by this status change.

move obname place
Move object obname before object place.

move objects from-obname to-obname place
Move the range of objects from from-obname to object to-obname inclusive to immediately
before object place.

3.4.3 Theory Commands

Each theory has an identifier and is associated with a file. Each theory also has a set of immediate
ancestors which it is dependent on. Commands are provided to set up new theories, load theories,
dump theories, and print theories.

Theories are named by ML strings. The conventions for naming theories are the same as for nam-
ing library objects explained at the beginning of this section. Each theory is associated with a file.
The value of the ML reference variable theory filenames : (string # string) listis alist of
pairs of theory names and names of associated files. The filenames include a full pathname, but do
not have any extension. For example, a valid filename string is " nuprl/lib/standard/core 1.
The actual file associated with a theory is this name with a ".thy' extension. Examine the
theory filenames variable to find out the theories that Nuprl knows about at a given time.

set_theory filename theory-name file-name
Add entry in theory filenames list for theory-name. If an entry already exists for theory-name,
update that entry.

show_theory filename theory-name
Show entry in theory_filenames list for theory-name.

Theory dependencies are recorded by the value of the theory_ancestors : (string # string
list) list reference variable. Each entry in this list is a pair of a theory’s name and a list of
names of other theories that the theory is immediately dependent on. There are ML functions to
compute the closure of this graph as and when necessary.

set_theory_ancestors theory-name theory-ancestor-list
Add entry in theory_ancestors list for theory-name. If an entry already exists for theory-name,
update that entry.

show_theory_ancestors theory-name
Show entry in theory_ancestors list for theory-name.
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Typically one adds a few dummy theories to theory_ancestors to simplify the description of the
ordering of theories.

The theories loaded in a Nuprl session are generally a subset of the theories that Nuprl knows
about. Between sessions, modified theories should always be explicitly saved. The functions for
loading and dumping theories are:

load _theory theory-name
Load theory-name at the end of the library from the associated file. If theory-name has already
been loaded, this function has no effect. Every non-theorem object is checked as it is loaded.
load_theories_with_ancestors theory-name-list
Load the theories named in theory-name-list at the end of the library, together with any ancestor
theories that haven’t yet been loaded. Theories are loaded in an order consistent with their
dependencies. Every non-theorem object is checked as it is loaded.
dump_theory theory-name
dump theory-name to the associated file. This leaves the theory theory-name in place in the
library.

Other utility functions are:

list_theories ()
List all the currently loaded theories. This is very useful if you are not sure which theories are
loaded and which not.

delete_theory theory-name
Delete theory-name from the current library. Does not affect the file associated with the theory.

short_print_theory theory-name
Create print-files for theory-name. theory-name must be loaded for this to work. If the asso-
ciated file-name is file-name, then two files are created; file-name.prl and file-name.tex. file-
name.prl is a file viewable by an editor running with Nuprl’s special 8-bit font. file-name.tex
is a self-contained I&TpXversion of the theory listing.

long print_theory theory-name
This is similar to short_print_theory except that proofs and extracts of all theorems are also
included. The files created have names file-name_long.prl and file-name_long.tex.

The theory theory-namealways begins with comment object theory-name_begin and ends with
comment object theory-name_end. The names of these objects are important. Most of the theory
functions rely on these delimiter objects being named the way they are. However, the user is free
to alter the contents of these objects to his or her liking. A useful function is:

add_theory delimiters theory-name
Add delimiter objects for the new theory theory-name to the end of the library.

There are variants on the load functions which check (and therefore expand) theorem objects at
load time. They are:

load fully theory theory-name
Load theory-name at the end of the library from the associated file. If theory-name has already
been loaded, this function has no effect. Every object is checked as it is loaded.
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load fully theories with_ancestors theory-name-list
Load the theories named in theory-name-list at the end of the library, together with any ancestor
theories that haven’t yet been loaded. Theories are loaded in an order consistent with their
dependencies. Every object is checked as it is loaded.

3.5 Object Dependencies and Ordering

A correct library in Nuprl is one where every definition and theorem refers only to objects occurring
previously in the library. Unfortunately, Nuprl does not guarantee that this property is maintained
when functions are used that modify the library. For example, it is possible to create a circular
chain of lemma references.

There is only one way to guarantee that a theory (or collection of theories) is correct. This is
to load it (them, sequentially) using one of the load-fully functions described at the end of the last
section. This will force a theorem’s proof to be expanded before the theorem is loaded into the
library, and so guarantee that proofs only reference theorems that occur previously in the library.

Loading without using these load-fullyfunctions and then using check_objects or check_theory
will not guarantee that the library is correct, since during the checking of a theorem, all later the-
orems will be present in the library and will retain the statuses they had when they were dumped.
However it is recommended that one always preceed a load-fully check, by loading the relevant
theories without expanding theorems, and then using check objects or check theory. There are
two reasons for this. Firstly, just to check that all proofs do indeed expand properly. Secondly,
the current load-fully functions will blithely continue loading a library after an error has occurred,
often creating a cascade of further errors. This bad behaviour will be corrected in the near future.

Nuprl does do some dependency checking with definitions. For example, if a definition is deleted
then the status of any entry depending on these objects is set to bad.

Because of the general lack of dependency checking, a user must be careful to keep library
objects correctly ordered or reloading may fail. The move function can be used to repair incorrect
orderings and ensure that objects occur before their uses.

Here is a list of some of the main object dependencies one should be aware of:

o Theorems on other theorems. Each theorem should only depend on theorems occurring earlier
in the library. Note that several kinds of theorems are referenced automatically by Nuprl
tactics. For example, well-formedness theorems (theorems whose names end in "_wf™) and
various support lemmas used by the rewrite package.

o Theorems on abstractions. A theorem shouldn’t refer to an abstraction before it is defined.

o Abstractions on abstractions. The right-hand-side of an abstraction should only refer to
abstactions defined earlier in the library. Note that abstractions should not be recursive.

o ML objects on theorems, abstractions and other ML objects ML objects frequently assume
the existence of certain theorems and abstractions. For example, one might include in an
ML object a rewrite tactic which references a set of lemmas. One should always consider the
introduction of such dependencies carefully. Continuing the example, if one were to change
one of the lemmas would one want the rewrite tactic to automatically use this change? Many
functions which access objects in the library can be written in a lazy fashion, such that they
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look up the object, only when they are called. Such functions however might be considerably
less efficient than ones which do need to do a fair amount of preprocessing. Ideally, one wants
to just do this preprocessing once. Below we discuss the use of caches to resolve this partial
evaluation problem.

o Theorems on ML objects Theorems can be proved using tactics and other ML functions defined
in ML objects, so needless to say, those theorems should occur later in the library than the
ML objects they are dependent on.

In addition, there are other dependencies one should be aware of:

o ML files on theories. It is desirable to be able to compile all ML files without having to
have all theories a-priori loaded, so in general any dependencies should be of the lazy variety
as explained earlier. It is a very bad idea to have compiled ML files dependent on functions
defined in ML objects; whenever an ML function is compiled, it is timestamped, and references
between ML functions keep track of these timestamps. All functions in ML objects are
compiled afresh every time the objects are loaded, so if one were to load ML files compiled in
an earlier session, one could have stale function references which would result in ML crashing.

o Theories on ML files This is fine. We will soon be extending the theory mechanism so that
one can specify optional ML files to only be loaded when certain theories are loaded.

o Cache Dependencies. The ML tactic system maintains a fair amount of state, much in the
form of preprocessed lemmas. We have an incremental update strategy for many of these
caches to ensure that they track changes in the library state, so for most purposes these
caches are invisible to the user. However, to date, not all the code for caches has been
updated to use this incremental strategy, so for example, one might run into situations where
the system refuses to acknowledge that one has added a missing lemma. In these situations,
executing the function reset_caches : wunit -> unit might help. Caches are discussed in
Chapter 9.

3.6 Future Developments

The theory mechanism was only added to Nuprl fairly recently and there are some obvious en-
hancements which need to be made. For example,

e namespace management
e automatic dependency checking

e support for maintaining sets of conjectured theorems, so one can develop theories in other
orders than foundations first in a sytematic way.
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Chapter 4

Terms

4.1 Introduction

In Nuprl, a term is a tree data-structure. The structure of terms is explained in detail in Section 4.2.
Terms have a variety of uses.

o All propositions in Nuprl’s logic are represented as terms, as are all expressions and types in
its type theory. We refer to them sometimes as object-language terms.

o Nearly all library objects are represented as terms. We refer to these terms as system-language
terms.

Terms are Nuprl’s equivalent of Lisp’s S-expressions; they are used as a general-purpose uniform
data-structure.

Terms are either primitive or abstract. Primitive terms have fixed pre-defined meanings. Ab-
stract terms or abstractions are defined in abstraction library objects as being equal to other terms.
An abstraction is unfolded when it is replaced by the right-hand side of its definition. Abstractions
are discussed in Chapter 5.

The visual appearance of a term is governed by its display forms. These are defined in display-
form library objects. Display forms are described in detail in Chapter 6.

Terms are interactively edited and viewed using a structured editor. This editor is described in
Section 4.4.

4.2 Term Structure

4.2.1 Overview

Here we give an abstract view of the term data-structure. Details follow in Section 4.2.2.
Let variables be some infinite class of atomic individuals. The class of terms as the least set of
expressions such that:

e if v is a variable, then v is a term,
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7

e if for 1 < ¢ < n we have that z7,..., 7, are variables, ¢; is a term, and we define

then

opid{piiki,....pmikn}(s15.. .5 80)
is a term.
We name the parts of a term as follows:

o opid{p1:k1,...,pm:kn} is the operator.

The parts of the operator are:

— opid is the operator identifier.

— p;:k; is the jth parameter. p; is its value, and k; is its type.

o The tuple (aq,...,a,) where a; > 0 is the arity of the term.

o 5, =ai,.. .,méi.ti is the 7th bound-term of the term. This bound-term binds free occurrences

of the variables 2%, ..., 2" in ;.
1 »Vay 2

When writing terms, we sometimes omit the brackets around the parameter list if it is empty.

4.2.2 Details

Terms are implemented in the current Nuprl system in Lisp. You should rarely have to work with
terms at the Lisp level. Rather you either use the term editor to view and edit terms, or a set of
term-related functions in ML.

We describe here the the current parameter types, the acceptable strings for opids, parameters,
and variables, and the implementation of these strings from the ML point of view.

The current parameter types and associated values are:

natural
natural numbers (including 0). Implemented using ML type int. Acceptable strings are
generated by the regular expression [0 — 9]*.

token
character strings. Implemented using ML type tok. Acceptable strings can draw from any
non-control characters in Nuprl’s font.

string
character strings. Implemented using ML type string. Acceptable strings can draw from
any non-control characters in Nuprl’s font.
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variable
Names of variables. Implemented using ML type var. Acceptable strings draw on the alpha-
bet "Ta—zA—20-9_-%". The % character

has a special use. See Section 7.2. The empty string is not an acceptable name for a variable
parameter.

level-expression
Universe level expressions. These are used to index universe levels in Nuprl’s type theory.
Implemented using ML type level exp. The syntax of level expressions is described in
Section 9.1.2.

The names of parameter types are usually abbreviated to their first letters.

Opids are character strings drawn from the alphabet "fa—zA—20—9_-!7. (Here "-"is the ASCII
character, "z — y ' indicates the characters from z to y inclusive.) An "!7 at the start of a character
string indicates that the term does not belong to Nuprl’s object language. Opids are implemented
using ML type tok.

Binding variables are character strings drawn from the same alphabet as variable parameters.
In addition, the empty string can be used. We call the binding variable with the empty string as
its name, the null variable. Null variables can never bind. Binding variables are implemented using
ML type var.

Earlier, when we described the term type, we said that variables were considered to be terms.
This was a slight simplification of the actual state of affairs; In Nuprl, we consider variables and
terms to be distinct. We have a special term kind, variable{v} for injecting variables into the
term type. So when we talk of the variable foo as a term, we are really thinking of the term
variable{foo:v}. When we write terms, this injection if often implicit. So for example, we write
bar(x;y) instead of bar(variable{x:v}; variable{y:v}).

We often assume a similar implicit injection for natural numbers. So for example, the term
bar(10;11) when written out in full is the term bar (natural number{10:n}; natural number{11:n}).

Some examples of terms in both pretty and plain notation are shown in Table 4.1.

4.3 Term Display

Pretty Notation

Plain Notation

Z

T+ oy

Ilabcll

Az.x
Ve,y:T. A

int ()

add(z;y)
token{abc:t}()
lambda(z.z)

all(T; z,y.A)

4.3.1 Notation and Logical Structure

This section introduces the approach we use for entering and displaying terms.

Table 4.1: Examples of term notation
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We distinguish between logical structure of terms, and the notation in which terms are pre-
sented. When we talk of the logical structure of a term, we are thinking of some abstract object
of mathematics. We are not just thinking of the term in uniform syntax, though the regularity of
the uniform syntax for a term does reflect the regularity of the underlying abstract object. When
we talk of notation, we are thinking of the visual presentation of abstract objects on the printed
page, or on the computer screen. When you read mathematical or logical expressions in familiar
notation, you often mentally construct the abstract object in your mind so readily that you forget
the distinction between abstract structure and notation.

Notation understandable by machines became a focus of study when people started to design
programming languages. The languages had to not only be easily understandable by humans, but
also easily parseable by machine. The study of notation became the study of regular expressions
and grammars. People devised sophisticated techniques for designing parsers.

In the programming language world, source texts in ASCII files correspond to our idea of
notation, and abstract-syntax-trees get close to our notion of logical structure.

In mathematics notation is crucial issue. Many mathematical developments have heavily de-
pended on the adoption of some clear notation, and mathematics is made much easier to read
by judicious choice of notation. However mathematical notation can be rather complex, and as
one might want an interactive theorem prover to support more and more notation, so one might
attempt to construct cleverer and cleverer parsers. This approach is inherently problematic. One
quickly runs into issues of ambiguity. Often to read mathematical notation one has to be aware
of the immediate context it is presented in. A simple example is that juxtaposition of symbols
can mean function application in one place and multiplication in another. A notion introduced in
programming languages to address ambiguity has been that of overloading operators; one assumes
that the type-checker can sort out what is meant, even if the parser cannot. Closely related to
this notion, is the notion of implicit coercions. There is also the question of what notation is sup-
ported by editors; mathematics presented in ASCII characters is not anywhere as easy to read as
mathematics in books and papers.

A half-way solution that is sometimes taken (for example with Mathematica), is to do what one
can with a parseable syntax in ASCII characters for input, and then use pretty-printing routines
for formatted output (say in Display PostScript).

The approach which we have taken ! is to design an editor that presents terms in pretty notation,
and groups the notation in chunks that correspond to parts of the underlying tree structures. One
edits the tree structure directly, so there is no need for a parser. Such editors are often called
structured editors.

The advantages of a structured editor are:

¢ We don’t have to worry about making the notation be umambiguous to a machine. It just
has to unambiguous to a human, who is aware of the full context the notation is used in.

e We have the opportunity to break away from the presentation of mathematics in ASCII
characters. Nuprl currently uses a single 8-bit font of up to 256 characters, but the possibilities
exist for using IATpX and Display PostScript -like technology to generate almost text-book
quality displays.

¢ Notation can be freely changed without altering the underlying logical structure of terms.

Yand which others have taken too, for example in the Cornell Synthesizer-Generator project
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e The possibility is opened up for context dependent notation. We could have presentations of
theorems, definitions and proofs decorated with information on local abbreviations.

e If you find notation confusing, you need only point and click the mouse on the notation in
question for an explanation.

Structured editors do have their disadvantages. The most major one is that they are quite
different from conventional text editors such as vi or emacs, and so it can take a while to learn how
to use them. We have tried to design the Nuprl editor to reduce this startup time. We welcome
suggestions from users for further improvements. Another disadvantage is that you have less control
over formatting, since all display formatting is done automatically. Again we have been working to
enhance the pretty-printing algorithm that Nuprl uses so that the formatting is acceptable.

4.3.2 Display Forms

We describe here our notion of a display form.

A display form definition associates a chunk of notation with a term. For example consider the
term add(z;y) for binary addition. The usual notation for this is to use an infix "+7. We could
write the notation chunk as:

O+ 0O

where the O’s are holes for the two subterms, and the outer box shows the extent of the chunk.
We call these holes term slots because in they can be filled by terms. Later on we shall encounter
text slots which can only be filled with text strings. Usually we need to indicate how term slots
correspond to the logical subterms of a term so we label term slots. For example, the definition of
the notation chunk for add(z;y) can be written:

+ =dform add(z; y)

Here, we read @ =gform b as saying that « is defined as the atomic notation chunk or display form
for b. Throughout this section, we use rectangular boxes to delimit terms and term slots.

Term slots stretch to accomodate the terms inserted in them. For example say we have the
term mul(1;2) which is displayed as "1 * 27. Then the term add(mul(1;2);3) will be displayed
as:

(1] » [2]] + [3]

Nuprl automatically adds parentheses according to display form precedences. When a display
form of lower precedence is inserted into the slot of display form with higher precedence, parentheses
are automatically inserted to delimit the slot. For example, we assign the display form for mul(z;y
a higher precedence than the display form for add(z;y). The term add(mul(1;2);3) is displayed
as

1 %2+ 3

but the term mul (1;add(2;3)) is displayed as
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1 % (2 + 3)

Let us move on to a more complicated display form; that for universal quantification. The
term all(7;x.P) means that “for all z of type T, the proposition P is true”. Note that the term
all(T;z.P) binds free occurrences of x in P. We would normally write al1(T;z.P) as

Ye:T. P

The display form definition for the al1(7;z.P) could be written as:

v@ :' —dform all(T; z.P)

Here, ™ O 7 is used to indicate a text slot. A text slot is filled with a text string rather than a
term. Text slots are used for term parameter values, and binding variables.
A few more display form definitions are:

L3 @ :' =dform eXiStS(T; z.P)
2. = =dform equal_int(z; y)

3. @ =dform variable{z:v}

4. @ =dform Datural number{i:n}

The last two display form definitions are rather special; 3 is the display form definition for variable
terms, and 4 is the display form definition for natural numbers. Both the display forms defined for
these terms have only a single text slot, and no other printing or whitespace characters.

Using these display forms the term

all(int(); i.exists(int(); j.equal(int(); j; add(i;1))))

has the notation:

@@ oM@ [0 [@][0

or leaving out the bounding boxes and circles for the slots and the term as a whole:

Vi:Z. 3Jj:Z. j=1i+1
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In general, a display form for a term is made up of 0 or more text and term slots, interspersed
with printing and space characters. We can annotate display forms with whitespace formatting
commands which specify where linebreaks can be inserted, and how to control indentation. Chap-
ter 6 describes in detail the structure and appearance of the display form definitions which are
contained in display objects in Nuprl theories. Chapter 6 also contains information on how to set
precedences, and how to control how precedence affects parenthesization.

The notation for some term tree is built up from the display forms associated with each node
of the tree — so the structure of the notation mirrors the structure of the term, and it makes sense
to talk about the display form tree of a term.

The display form tree is the tree structure that you edit with Nuprl’s term editor. Nuprl takes
care of translating back-and-forth between the two kinds of trees. In a display form tree, each
display form and each slot is considered a node of the tree If a text (term) slot is not empty, it is
identified with text string (display form) filling it. All the slots of a display form are considered
to be the immediate children of the display form. The editor considers slots ordered in the order
they appear, left to right, in display form definitions, not in the order in which they occur in the
uniform syntax.

In most of this manual, we refer to terms by their display notation rather than their uniform
syntax, unless we want to emphasize their logical structure. Also, in talking the term editor, we talk
informally about nodes of terms, when we are referring to nodes of the corresponding display-form
trees.

When one enters a new terms using Nuprl’s structured editor, one most often enters the term
in a top-down fashion, starting with the root of the term tree and working on down to the leaves.
This means that one has to work with incomplete terms. For example, at an intermediate stage of
entering the term

Vi:Z. 3Jj:Z. j=1i+1
you might be presented with term:
Vi:Z. dlvar]:[typel. [prop].

Here [var], [type] and [prop] are place-holders for slots. [var] is a place-holder for a text slot,
and [typel] and prop are place-holders for term slots. If a slot has a place-holder, we say that the
slot is empty, or uninstantiated. The labels which appear in the place-holders for a display form
(the var, type or prop in the example above) are controlled by the display form’s definition. If a
text (term) slot contains a a text string (term) we say that slot is filled or instantiated. If a display
form has no uninstantiated slots, then it is considered complete. Placeholders re-appear when the
contents of slots are removed.

4.3.3 Editor Cursors

One navigates around a term by moving a cursor, sometimes called the point by analogy with
emacs. The cursor can be in one of three modes:

term mode
A term mode cursor is always positioned at some term node of the term tree. The term node
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it indicated, by highlighting its notation and the notation for all its subtrees. The highlighting
is usually achieved by using reverse video; swapping foreground and background colors. In
this document we indicate a highlighted region of a term by drawing an outline around it.
For example,

Vi:Z. 3Aj:Z. |j=1+1

indicates that a term cursor is at the subterm j = i + 1. Occasionally a term has no width,
and a term cursor on such a term is displayed as a thin vertical line. In this document, we
indicate such a cursor by |.

text mode
The text cursor is used for editing text in text slots. The cursor is represented as 1. It is
positioned either between two adjacent characters of a text slot, or before the first character,
or after the last. For example, consider a text slot containing the text string "abcdef'. Valid
text cursors for this string include

|abcdef abc|def abcdef|

The text cursor is the insertion point for new characters.

There is a potential ambiguity as to which text slot a text cursor is at: consider two adjacent
text slots containing the strings "aaa™ and "zzz"' and the following text cursor:

aaalzzz.

Display forms are designed so this kind of situation should never occur.
The text cursor is significantly thinner than the term cursor on a no-width term, so it should

be easy to distinguish the two.

screen mode
Certain cursor motion commands are designed for moving around a term’s display character-
by-character in much the same way as with a conventional text editor. When moving with
these commands the cursor always occupies a single character position on the screen. If
possible, the editor uses a text cursor. Otherwise it uses a screen cursor. A screen cursor on
a character is displayed by outlining the character.

For example, if we had the following text cursor in a term:
Vi:Z. 3j:Z. j=1i+1

then a ‘move-left-one-character’ command would leave a screen cursor (indicated by a box)
over the "V,

Vli:z. 37:2. j=1+1

In the rest of this document we’ll never have to explicitly represent a screen cursor, so all
outlined terms should be interpreted as term cursors.

34



4.3.4 Sequences

The term editor has special features for handling certain kinds of sequences of terms. It makes
sequences appear much like terms with variable numbers of subterms. The kinds of sequences
supported are described below.

Sequences are constructed by the right-associated use of pairing terms. Each kind of sequence
has its own pairing term, and also a special term to represent the empty sequence. Eventually,
we'll relax the right-association restriction. Often there is no need to distinguish between a term
and a one element sequence containing that term. So, in specific contexts, the editor treats a term
as a one element sequence. These contexts are pointed out at relevant points in this document.

The term tree cursor motion commands skip over this internal structure, and for nearly all
purposes the internal structure of sequences can safely be ignored.

4.3.4.1 Term Sequences

A term sequence has a linear sequence of term slots. For example, one kind of sequence which
happens to have 4 empty slots might be displayed as:

([elmnt], [elmnt], [elmnt], [elmnt])

. All the term slots of the sequence are considered siblings in the display form tree, and the whole
sequence is their immediate parent.

The editor has special commands for inserting and deleting both elements and segments of term
lists.

Different kinds of term sequences have different left and right delimiters, (the "(7 and ™)™
respectively in the example) and different element separators (the ", in the example). Delimiters
and separators in term sequences always consist of at least one character.

4.3.4.2 Text Sequences

A text sequence is a text string in which zero or more characters are replaced with terms. Text
sequences are primarily used for ML code, for comments, and for the left-hand sides of display
forms.

The editor presents a text sequence as a display form with alternating text and term slots. A
text sequence normally has no left or right delimiters or element separators, in contrast to term
sequences. Text sequences are however easily identified because they usually occur in well-defined
contexts.

An example of a text sequence is the ML expression:

With ’n + 17 (D 0)~
THENW TypeCheck”™

This text sequence consists of 3 term slots filled with the terms "’n + 1>, """ and "7, and 4
text slots filled with the text strings "With 7, " (D 0)", "THENW TypeCheck’, and " (the null or
empty text string). The "~ s are new-line terms. Keeping new-line characters out of text strings
simplifies the display formatting algorithm. Usually we make new-line terms invisible, but here we
show them with a printing character for clarity.
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The editor supports special operations on text sequences. For example, you can cut out sub-
sequences delimited by any text cursor positions, and paste in at any text cursor position.

4.4 Term Editor

4.4.1 Introduction

Term editor windows are used for viewing and editing terms. The ML Top Loop window is a term
editor window, as are the windows opened when you view most kinds of Nuprl library objects.
Each window displays a single display form tree representing a single term. The editor accepts
input from both the keyboard, keypad and the mouse. All editing operations can be carried out
from the keyboard alone, though frequently the mouse and keypad commands are far simpler and
easier to remember. Mouse commands are described in Section 4.4.9.

With a text cursor, keystrokes corresponding to printing characters cause those characters to be
inserted. With a term or screen cursor, printing characters can form part or all of editor commands.

Input characters typed at the keyboard in multi-character commands are echoed as highlighted
text near the position of the cursor, and can be corrected by using DELETE.

The default key bindings are intended to be reminiscent of emacs’s key bindings. You may wish
to use alternative key bindings. See the editor customization section for details (not yet written).

The editor adjusts the display of an object in a window to the size of the window. If the window
is too small, not all the object can be displayed at once. In this event, one can resize the window, or
scroll the window up and down. Sometimes, if the window is to narrow, some subterms are elided.
The display form tree for an elided subterm is replaced by "... . Eventually, you will be able to
examine elided subterms by moving the root display form of an editor window to some term tree
position other than the term root. Currently, the only way to encourage the system to un-elide a
subterm is to widen the window as much as possible.

4.4.2 Cursor/Window Motion

Also see Section 4.4.9 for how to use the mouse to move around.

4.4.2.1 Screen Oriented

The screen motion commands are described in Table 4.2.

These cursor motion commands ignore the structure of the term in the window. They allow
one to quickly navigate to parts of the screen. After a screen cursor command the cursor is always
either in text mode or screen mode. A useful command to use when ending up with the cursor over
the printing character of a display form is the SWITCH-TO-TERM command. If one tries to moves
the cursor over the top or bottom of the display, the window scrolls appropriately. There are also
explicit window scrolling commands.

4.4.2.2 Tree Oriented

The tree walking commands are summarized in Table 4.3.
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(C-P) | SCREEN-UP move cursor up 1 character
(C-N) | SCREEN-DOWN move cursor down 1 character
(C-B) | SCREEN-LEFT move cursor left 1 character
(c-F) | SCREEN-RIGHT move cursor right 1 character
(C-A) | SCREEN-START move to left side of screen
(C-E) | SCREEN-END move to right side of screen
(c-L) | SCROLL-UP scroll window up 1 line

(M-L) | SCROLL-DOWN scroll window down 1 line
(c-V) | PAGE-DOWN move window down 1 page
(M-V) | PAGE-UP move window up 1 page
(c-T) | SWITCH-TO-TERM | switch to term mode

Table 4.2: Screen Motion Commands

(M-P) UP move up to parent

(M-B) LEFT structured move left
(M-F) RIGHT structured move right
(M-N) DOWN-LEFT move to leftmost child
(M-M) DOWN-RIGHT move to rightmost child
(M-4) LEFTMOST-SIBLING | move to left-most sibling
(M-E) RIGHTMOST-SIBLING | move to right-most sibling
(M-<) UP-TO-TOP move up top of term
(Cc-[LINEFEED|) | RIGHT-LEAF next leaf to right
(M-[LINEFEED]) | LEFT-LEAF next leaf to left
RIGHT-EMPTY-SLOT | next empty slot to right
(c-RETURN]) RIGHT-EMPTY-SLOT | next empty slot to right
(M-RETURN|) | LEFT-EMPTY-SLOT | next empty slot to left

Table 4.3: Tree Motion Commands

UP, LEFT, RIGHT, DOWN-LEFT, DOWN-RIGHT are the basic walking commands. Within text slots,
LEFT and RIGHT stop at each word. (Use screen motion commands to move by character.) These
commands recognize text and term sequences, and skip over their internal structure.

RIGHT-LEAF, LEFT-LEAF, RIGHT-EMPTY-SLOT, LEFT-EMPTY-SLOT are particularly good for
rapidly moving around terms, since you can often get where you want to go by just repeatedly
using one of them. Note that the binding of to RIGHT-EMPTY-SLOT doesn’t work in text
sequences. In that case, you need to use (C—).

4.4.3 Adding New Text

These commands are for inserting text whenever you have a text cursor. The commands are
summarized in Table 4.4.

Standard ASCII printing characters (including space) self insert whenever one has a text cursor.
Non-standard characters can be inserted using INSERT-SPEC-CHAR-num. num is the decimal code
for the character. (See Appendix ?? for a table of special character codes, or execute in a unix
shell window
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z INSERT-CHAR-Z insert char z
(C-#)num | INSERT-SPEC-CHAR-num | insert special char z
RETURN INSERT-NEWLINE insert newline

Table 4.4: Text Insertion

xfd -font nuprl-13 &

to bring up a display of the font. Clicking on a character results in its decimal code
being displayed.) Alternatively, special characters can be copied from the object FontTest in the
core-1 theory.

The INSERT-NEWLINE is only appropriate in text sequences, since the newline ‘character’ is
actually a term. This restriction simplifies the display layout algorithm and should not prove to be
an inconvenience.

4.4.4 Adding New Terms

The insertion commands for terms are shown in Table 4.5. These commands are only appropriate

with a term cursor.

name INSERT-TERM-name insert name

(c-I)name | INSERT-TERM-LEFT-name | insert name
(M-I)name | INSERT-TERM-RIGHT-name | insert name

(c-S)name | SUBSTITUTE-TERM-name | replace with name
(cM-I) INITIALIZE-TERM initialize term slot
(cM-S) SELECT-DFORM-OPTION selects dform variations

Table 4.5: Term Insertion

name in these commands is a string of characters, naming a new term to be inserted. The
interpreter for name strings checks each of the following conditions until it finds one which applies.

1.

2.

3.

name is an editor command enabled in a particular context. See sections for examples.
name is an alias for some display form, defined in in the library object for that display form.

name is the name of a display form object. It refers to the first display form defined in that
object.

. name is of the form n? where n is the name of a display form object and ¢ is a natural number.

nt refers to the 7th display form definition in the object named n. Definitions in objects are
numbered starting from 1.

. name is the name of an abstraction object, then name refers to the earliest display form in

the library for that abstraction.

. name is all numerals, then the term referred to is the natural-number{name:n}() term of

Nuprl’s object language.
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7. name refers to the variable term variable{name:v}().

Names always have acceptable extensions as variable names, so the editor doesn’t interpret
name until some explicit terminator is typed. For example, this can either be NO-OP (EPACH)) or
a cursor motion command. NEXT-EMPTY-SLOT ((C-RETURN])) is a particularly useful terminator.

INSERT-TERM-name is only applicable at empty term slots. It results in the display form referred
to by name being inserted into the slot. If name is terminated by a NO-OP, then a term cursor is
left at the new term. If name is teminated by some cursor motion command, then that command
is obeyed.

INSERT-TERM-LEFTname is intended for use at a filled term slot. Its behavior is to:

1. save the existing term in the slot, leaving the slot empty,
2. insert the new display form referred to by name into the slot,

3. paste the saved term into the left-most term slot of the new display form. If the new display
form has no term slots, then the saved term is lost.

INSERT-TERM-RIGHTname behaves in a similar way to INSERT-TERM-LEFT except that in step
3, the saved term is pasted into the right-most term slot of the new display form.

SUBSTITUTE-TERM-name allows you to replace one display form with another which has the
same sequence of child text and term slots. The children of the old display form become the children
of the new display form. In the event that the new display form has a different sequence of children
SUBSTITUTE-TERM-name tries something vaguely sensible. In general, in these cases, it is safer to
explicitly cut and paste the children.

INITIALIZE-TERM initializes a term slot to some default term if one is appropriate. The term
slot must initially be empty. INITIALIZE-TERM is automatically invoked by Nuprlto initialize new
windows. If you want to re-initialize a window, place a term cursor at the root of the term in
the window, delete the term, and then give the INITIALIZE-TERM command. The default terms
for particular contexts are described in various sections of this document. If no default has been
designated, INITIALIZE-TERM does nothing.

SELECT-DFORM-OPTION when the term cursor is at certain terms, selects an alternative display
form for that term. For example, if term cursor is positioned at an independent function type, it
selects the more general dependent-function display form.

4.4.5 Cutting and Pasting

The cut-and-paste commands work on terms, segments of text slots, and segments of text and term
sequences. In this section we refer to these collectively as items. Cut items can be saved on a save
stack. All items on the save stack are represented as terms, and it is often possible to cut one kind
of item and then paste into another kind of context. For example, one can cut a term, and paste
into text sequence, or cut a segment of text from a text slot, and paste into a term sequence.

We define the following kinds of commands:

e SAVE: does not remove an item, but does push a copy onto the save stack. Same idea as
copy-as-kill in emacs.

e DELETE: remove an item from a buffer, not saving it anywhere.
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® CUT: (= SAVE + DELETE) removes an item from a buffer and pushes it onto the top of the
save stack. Same idea as kill in emacs, although Nuprl does not append together items cut
immediately one after the other.

e PASTE: inserts the item on top of the stack back into a buffer, removing it from the stack.

e PASTE-COPY: inserts the item on top of the stack back into a buffer, not removing it from
the stack. Same idea as yank in emacs.

e PASTE-NEXT: Only used immediately after a PASTE. Removes the item just pasted from the
buffer, and then does a PASTE. Same idea as yank-nezt in emacs.

4.4.5.1 Basic

The basic cut and paste commands are shown in Table 4.6.

DELETE-CHAR-TO-LEFT | delete char to left of text cursor
(c-D) DELETE-CHAR-TO-RIGHT | delete char to right of text cursor
(M-D) CUT-WORD-TO-RIGHT cut word to right of text cursor
(c-K) CUT cut term

(M-K) SAVE save term

(cM-K) | DELETE delete term

(c-Y) PASTE paste item

(M-Y) PASTE-NEXT delete item then paste next item
(cM-Y) | PASTE-COPY paste copy of item

Table 4.6: Basic Cutting and Pasting

DELETE-CHAR-TO-LEFT and DELETE-CHAR-TO-RIGHT are conventional character deletion com-
mands. They can be used in any text slot of a term or in a text sequence. They will also work on
newline terms in text sequences. They do not save the character on the save stack.

CUT-WORD-TO-RIGHT cuts the word to the right of a text cursor. For convenience if a term is
to the immediate right of a text cursor in a text sequence, then that term is cut.

CUT, SAVE, AND DELETE all work on a term underneath a term cursor. SAVE pushes a copy of
the term onto the save stack leaving the term itself in place, DELETE deletes the term, leaving an
empty term slot, and cUT is the same as a SAVE followed by a DELETE. These commands work fine
on terms in text and term sequences.

When a term cursor is at an empty term slot, the PASTE and PASTE-COPY commands paste the
term on top of the stack into the slot. PASTE always removes the term from the top of the save
stack, so successive pastes retrieve successively-earlier cut terms. PASTE-COPY is like PASTE, except
the item pasted is also left on top of the save stack. This is useful if you want to make several
copies of an item.

PASTE-NEXT is only intended to be used immediately after a PASTE or a previous PASTE-NEXT.
It deletes the last term pasted, and replaces it with the term before on the save stack. By repeating
PASTE-NEXT, you can search back through the save stack for some desired term.

40



4.4.5.2 Region

A region is a segment of any text slot, or a segment of a text or term sequence. The region cut and
paste commands are shown in Table 4.7.

(Cc-BPACE]) | SET-MARK set mark at point

(c-X)(c-X) | SWAP-POINT-MARK | swap point and mark

(c-W) CUT-REGION cut region

(M-W) SAVE-REGION save of region

(CM-W) DELETE-REGION delete region

(c-(Y) PASTE paste region

(M-Y) PASTE-NEXT replace last paste with new paste
(cM-Y) PASTE-COPY paste copy of region on save-stack top

Table 4.7: Region Cutting and Pasting

A region is delimited by the editor’s term or text cursor and an auxiliary text or term cursor
position. Following emacs’s terminology, we call the cursor’s position the point and the auxiliary
cursor position the mark.

The sET-MARK command sets the mark to the current cursor position. and the SWAP-POINT-
MARK command can be used to check the mark’s position. It doesn’t matter whether mark is to
the left or the right of point when selecting a region. In what follows, we call the left-most of point
and mark the left delimiter, and the right-most, the right delimiter. If a term is used a region
delimiter, the term is understood to be included in the region.

Various regions are acceptable: for selecting a text string in a text slot, both delimiters must
be text cursor positions. For selecting a segment of a term sequence, both delimiters must be term
cursor positions. For selecting a segment of a text sequence, you can use either a text cursor or a
term cursor position for each delimiter.

SAVE-REGION saves a region on the save stack. DELETE-REGION deletes the region. The kind
of cursor it leaves depends on the kind of region selected. If the region is of a text slot, or a text
sequence, DELETE leaves a text cursor at the old position of the region. If the region is of a term
sequence, an empty term slot is left in place of the region. CUT-REGION has the same effect as a
SAVE-REGION followed by a DELETE-REGION.

The paste commands for regions are the same as the basic paste commands. You can paste
with a text cursor in a text slot or text sequence, and a term cursor at any empty term slot. If you
paste a sequence into another sequence of the same kind, paste merges the pasted sequence into the
sequence being pasted into. In this event, the point is set to be the left-delimiter for the just pasted
sequence, and the mark is set to be the right-delimiter. This ensures proper functionality for the
PASTE-NEXT operation. Otherwise, if you are pasting into a sequence, the pasted item always is
incorporated as a single sequence element, and both the mark and point are set to that element.
Note that it doesn’t make sense to try to paste a term or a text sequence containing a term into a
text slot that is not in a text sequence.

4.4.6 Adding and Removing Slots in Sequences

The commands are summarized in Table 4.8.
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(c-U) | OPEN-SEQ-TO-LEFT open slot to left of cursor
(M-U) | OPEN-SEQ-TO-RIGHT open slot to right of cursor
(c-0) | OPEN-SEQ-LEFT-AND-INIT | open slot to left and init
(M-0) | OPEN-SEQ-RIGHT-AND-INIT | open slot to right and init
(c-C) | CLOSE-SEQ-TO-LEFT close slot and move left
(M-C) | CLOSE-SEQ-TO-RIGHT close slot and move right

Table 4.8: Sequence Term Slot Editing

If a term cursor is at an element of either a term or a text sequence, then OPEN-SEQ-TO-LEFT
and OPEN-SEQ-TO-RIGHT add a new empty slot to the left and right respectively of the cursor.
The cursor is left at the new empty slot. On an empty term sequence, the two commands have the
same effect; they simply delete the nil sequence term. If a text cursor is in a text sequence, both
commands open up an empty term slot at the text cursor, and leave the cursor at the new slot.

With text or term sequences represented by a single term, these commands infer the kind of
sequence to create from context. Occasionally with term sequences, more than one kind of sequence
is permitted in a given context (for example, in precedence objects) and in such cases you can use
explicit term insertion commands to create the sequence. Such ambiguity shouldn’t arise with text
sequences.

OPEN-SEQ-LEFT-AND-INIT and OPEN-SEQ-RIGHT-AND-INIT are similar, but if there is some ob-
vious term to insert in the opened up slot, then that term is automatically inserted and the cursor
is left at an appropriate position in the new term.

If a term cursor is at an empty term slot in a term sequence, the CLOSE-SEQ-TO-LEFT and
CLOSE-SEQ-TO-RIGHT commands delete the slot, and then (if possible) move the cursor to the
element to the left or right respectively of the slot just deleted. If the term slot is filled with a
term, that term is first deleted. If the term slot is in a text sequence, these commands leave a text
cursor at the position of the deleted slot.

4.4.7 Opening, Closing, and Changing Windows

The relevant editor commands are shown in Table 4.9

(c-Q) | QuIT close window without saving
(c-Z) | EXIT save, check, and close window
(c-J) | JUMP-NEXT-WINDOW | jump to next window
JUMP-ML jump to ML top loop

Table 4.9: Commands For Changing and Closing Windows

Term editor window are opened by using the ML view command on a library object. They are
also opened by the proof editor, when then proof editor SELECT command is issued on sequents
and ruleboxes, and when the proof editor TRANSFORM command is given.

EXIT first saves a copy of the object. It then checks the object before closing the window. This
checking has the same effect on library objects as using the ML check command. If the check fails,
then the window is left open. If you still want to close the window, use QUIT. Seperate save and
check commands are described in Section 4.4.8.
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QUIT is an abort command. It closes the window, abandoning any changes made to the window
since it was last checked by attempting EXIT.

JUMP-NEXT-WINDOW allows one to cycle around all the currently open windows, including any
proof editor windows.

JUMP-ML moves the cursor over to the ML top-loop window.

4.4.8 Utilities

(c-X)id | IDENTIFY-TERM gives info on term at cursor
(c-X)su | SUPPRESS-DFORM suppress display form at cursor
(c-X)un | UNSUPPRESS-DFORM unsuppress display form at cursor
(c-X)ex | EXPLODE-TERM explode term at cursor

(c-X)im | IMPLODE-TERM implode term at cursor

(c-X)ch | CHECK-OBIECT check object

(c-X)sa | SAVE-OBJECT save object

(c-X)ab | VIEW-ABSTRACTION view abstraction def of term
(c-X)df | VIEW-DFORM view display form def for term
(c-X)ns | INSERT-EMPTY-STRING | insert empty string in text slot

Table 4.10: Utility Commands

Various utility commands are shown in Table 4.10 The IDENTIFY-TERM, SUPPRESS-DFORM and
UNSUPPRESS-DFORM commands assist one in interpreting unfamiliar or ambiguous display forms.

IDENTIFY-TERM will print out in the ML Top-Loop window information on the term and display
form at the current cursor position. If one likes, one can then go and view the appropriate display
form and abstraction objects.

SUPPRESS-DFORM suppresses use of the display form the cursor is sitting at for the whole object
one is viewing. If multiple display forms are defined for a term, a single SUPPRESS-DFORM might
result in some other more general display form being selected. In this case one can repeat SUPPRESS-
DFORM. When all appropriate display forms for a term are suppressed, the term is displayed in
uniform syntax.

UNSUPPRESS-DFORM restores a suppressed display form, when the editor cursor is at a term to
which that suppressed display form belongs. Display forms remain suppressed until one explicitly
unsuppresses, or until one closes the editor window.

EXPLODE-TERM replaces the term the cursor is at with a cluster of terms which display the term
in uniform syntax, and allow one to change the operator structure. For example one can change
the opid name,the number and types of the parameters, or the term’s arity. See Section 4.5.2 for
details on how to edit an exploded term’s structure.

IMPLODE-TERM replaces an exploded term at the cursor by the term which the exploded term
represents.

INSERT-EMPTY-STRING is useful for inserting empty text strings into text slots. Normally, when
all the characters in a text slot that is outside of a text sequence are deleted, a text slot placeholder
is left rather than an empty string. This is because usually such slots are used for things like
variable names, and using the empty string for such entities can be confusing. Use this command
when an empty text string is what is really wanted.
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4.4.9 Mouse Commands

The mouse commands are shown in Table 4.11

MOUSE-SET-POINT set mark then point
(c-MOUSE-LEFT]) MOUSE-SET-TERM-POINT | set mark then point to term
[MOUSE-MIDDLE] MOUSE-VIEW-DISP view display form of term
(c-MOUSE-MIDDLE|) | MOUSE-PASTE as PASTE

<M—|MOUSE—MIDDLE|> MOUSE-PASTE-NEXT as PASTE-NEXT
<CM—|MOUSE—MIDDLE|> MOUSE-PASTE-COPY as PASTE-COPY

MOUSE-VIEW-AB view abstraction definition of term
(C-MOUSE-RIGHT]) MOUSE-CUT cut term or region

(M- [MOUSE-RIGHT] ) MOUSE-SAVE save term or region
(CM-[MOUSE-RIGHT]) MOUSE-DELETE delete term or region

Table 4.11: Mouse Commands

The mouse commands are designed to allow easy jumping around terms, cut-and-pasting, and
viewing of information on terms.

MOUSE-SET-POINT first sets the mark at the current editor cursor position, (not the mouse
position) and then sets the point, the editor’s cursor, to where the mouse is pointing. MOUSE-SET-
POINT sets point to either a term cursor or text cursor. It chooses a text cursor if one is valid
between the character pointed to by the cursor and the character to the immediate left. If there is
a null width term to the immediate left of the mouse, the cursor is set to that term. Otherwise, the
cursor is set to the most immediate surrounding term which contains the character being pointed to
by the mouse. This command is set up so that one can select a region by using MOUSE-SET-POINT at
one end of the region and then MOUSE-SET-POINT at the other; after the second MOUSE-SET-POINT
the mark will be at one end of the region and point will be at the other.

MOUSE-SET-TERM-POINT is like MOUSE-SET-POINT except that point is always set to the term
immediately surrounding the character being pointed to.

MOUSE-CUT is the same as CUT-REGION in text sequences. and text slots. Otherwise it behaves
the same as cuT. Likewise with MOUSE-SAVE. MOUSE-PASTE is the same as PASTE, and MOUSE-
PASTE-COPY is the same as PASTE-COPY.

4.5 Editing Term Structure

4.5.1 New Term Entry

The term editor recognizes certain input sequences as indicating that a new term should be created.
A new term structure can be created as follows:

e Position a term cursor and an empty slot.
e Enter the letters of the new term’s opid

e Enter a (possibly empty) list of single letters, designating the new term’s parameter types.
The list should be delimited by "{™ and "} characters, and elements should be seperated by
™, " characters. Empty lists of parameter types are optional.
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e Enter a (possibly empty) list of numbers, designating the number of binding variables for
each subterm. The list should be delimited by " (" and ") characters, and elements should
be seperated by "; " characters. This list specifying the arity of the term must be entered,
even when it is empty.

For example, if you enter
myid{n,t}(0;1)

the term myid{[naturall :n, [token]:t}([term]; [binding].[term]) is created.

4.5.2 Exploded Terms

A term constructor is ezploded when it is replaced by a special collection of terms, so arranged so
that you can edit the structure of the term constructor; change its opid, change the number and
kind of its parameters, or change its arity. Note that in practice, the only time you usually edit
exploded terms is when you add or change the definition of an abstraction.

The commands for editing exploded terms are summarized in Table 4.12.

(c-X)ex | EXPLODE-TERM explode term at cursor
(c-X)im | IMPLODE-TERM implode term at cursor
exterm | INSERT-TERM-exterm | insert new exploded term

lparm | INSERT-TERM-lparm | insert level exp parm
vparm | INSERT-TERM-vparm | insert variable parm

tparm INSERT-TERM-tparm | insert token parm

sparm INSERT-TERM-sparm | insert string parm

nparm | INSERT-TERM-nparm | insert natural number parm

(c-0) OPEN-SEQ-TO-LEFT open bterm / parm / bvar slot to left
(M-0) OPEN-SEQ-TO-RIGHT | open bterm / parm / bvar slot to right

Table 4.12: Exploded Term Editing

To show how they are used, we walk through the entry of the term foo{bar:s}(A;z.B). Position
a term cursor at an empty term slot and enter:

extermSPACE

The highlighted term should look like:

EXPLODED<<[opid]{}()>>‘

Enter the opid:

(c- EETURN )foo
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to get:
EXPLODED<<fool{}()>>

Click on the }, and you should get a null width term cursor sitting on an empty term
sequence for parameters.

EXPLODED<<£oo{[} ()>>
Enter (c-0) to add a new slot to the parameter sequence:
EXPLODED<<foo{| [parm] } ()>>
Insert the string parameter with text bar:
sparmRETURN|bar
to get:
EXPLODED<<foo{bar|:s}()>>

Click on the ) to get a null width term cursor sitting on an empty term sequence for
bound terms:

EXPLODED<<foo{bar:s}($>>

Enter (c-0)(c-0) to make a two element sequence for bound terms, leaving the cursor on the
left-most element.

EXPLODED<<foo{bar:s}( | . [term] |; . [term])>>

Click on the second ".7 to get a null width term cursor sitting on an empty term
sequence for binding variables:

EXPLODED<<foo{bar:s}( .[term] ;H. [term])>>
Enter (c-0) to open up a slot in the sequence, and enter a binding variable term:
EXPLODED<<foo{bar:s}( [term];|[bvar].[term])>>
Finally, click on any part of EXPLODED and then enter
(c-X)im

to implode the exploded terms. You should now have the term:

‘foo{bar:s}( [term] ; [var].[term]) ‘

You could now go ahead and fill in the binding variable, and subterm slots. In general, when
imploding and exploding terms the parameter values, binding variable names, and subterms stay
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the same, so entering and/or editing them when a term is exploded has the same effect as when
the term is imploded.
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Chapter 5

Abstractions

Abstractions are terms which are definitionally equal to other terms. They are introduced by
abstraction objects in Nuprl theories. An abstraction can be defined in terms of other abstractions,
but the dependency graph for abstractions should be acyclic. In particular, an abstraction may not
depend on itself. Recursive definitions can be introduced as described in Section 10.2.4.

Abstraction definitions have form:

lhs == rhs

The terms lhs and rhs are pattern terms, and there is implicit universal quantification over the the
free variables in lhs and rhs. When Nuprl unfolds some instance lhs-inst of lhs, it first matches
lhs-inst against [hs, generating bindings for the free variables of lhs such that if the bindings were
applied as a substitution to [hs, one would get back lhs-inst. It then applies the substitution to rhs
to calculate the term rhs-inst which lhs-inst unfolds to.

For an example of a abstraction, see Iigure 5.1. Here we define a type of segments of integers.

EDIT ABS int_seg

{i..j7¥== {x:Zli < k < j}

Figure 5.1: Definition of the int_seg abstraction

The structure of the left-hand side is more redily apparent if we write it in uniform syntax: {i..j7}
is int_seg(i;j), a term with opid int_seg, no parameters, and 2 subterms. An instance of the
left-hand side is {0..107} and this would unfold to {k:Z|0 < k < 10}.

Abstractions can have binding structure; for example, consider the exists unique abstraction in
Figure 5.2.

To handle abstractions with binding variables in a systematic way, we define the procedure for
unfolding an abstraction using second-order matching and substitution functions.

If you are familiar with second-order matching and substitution, you can skip this paragraph.
First-order matching and substitution functions are inadequate for handling terms with binding
structure.
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EDIT ABS exists.uni

Jtu:T. P[ul==3u:T. P[ul AV v:T. P[vl] = v=u €T

Figure 5.2: Definition of the exists_uni abstractions

For example, there is no way of applying a first order substitution to the pattern term “Az. y”
to get the instance “Az. 2 4+ 17; if we attempt to apply the substitution [y — x + 1] to “Az. y”,
we force renaming of the bound variable z to 2/, and we get “Az’. x + 1”7. One could somehow
suppress renaming but then substitution becomes ill-behaved; on substitution, free variables can
become bound - a process known as capture. For more on this, consult some introductory book on
predicate logic.

A second-order binding is a binding of a second-order variable to a second-order term. A second-
order variable is essentially an identifier as with normal variables, but it also has an associated arity;
some n > 0. Second-order terms are a generalization of terms, and can be represented by bound-

terms such as x1,...,2,,.t. They can be thought of as ‘terms with holes’, terms with zero or
more subtrees missing. The binding variables are place-holders for the missing subtrees. In any
second-order binding v — z1,...,2,,.7, the arity of » must be equal to n.

An instance of a second-order variable v with arity n, is a term we write as v[aq;...;a,], where
ai,...,a, are terms. We call aq,...,a, the arguments of v.

A second-order substitution is a list of second-order bindings. The result of applying the binding
[v — wi,..., Wyt w,) to the variable instance v[aq;...;a,], is the term ¢,, ,, — the second-

order variable’s arguments filling the holes of the second-order term.

Going back to the example, the variable P is a second order variable with arity 1, and the terms
P[u] and P[v] are second-order-variable instances. Consider unfolding an instance of the left-hand
side, say the term

dVi:Z. i =0 €Z

“

. Here, “, = |, € 7 is a 3 place typed equality relation. @ = b €T means that @ and b are equal,

and are both members of type T'. The substitution generated by matching this against
Jtu:T. P[u]

would be
P i.i=0€Z;Tw— Z],
and the result of applying this to
Fu:T. P[u] AVv:T. P[v] =v = u €T
would be

F'u:Z. u=0AVvV:Z. v =0€EZLZ=>v=u€Z.
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The matching and substitution functions used by Nuprl are a little smarter than shown above;
they try to maintain names of binding variables. So the result one would get using Nuprl would

be:
AVi:Z. 1 =0 AVV:Z. v =0€Z=>v =1 €%Z.

Just as abstractions can be unfolded by applying their definition left-to-right, so instances of
their right-hand sides can be folded up to be instances of their left-hand sides. Folding doesn’t
always work. For example, information can be lost in the unfolding process; Definitions can have
variables, parameters and terms that occur on the left-hand side but that don’t occur on the
right-hand side !.

Note that only variables and second-order variables with all first-order variable arguments are
allowed as subterms of the left-hand side of abstraction definitions.

Abstractions can also contain meta-parameters, which the matching and substitution functions
treat as variables. We usually indicate that a parameter is meta, be prefixing it with a $ sign. For
example, we might define an abstraction label{z:t,i:n}, as shown in Figure 5.3.

EDIT ABS label

label{$tok:t,$nat:n}==pair(token{$tok:t};natural{$nat:n})

Figure 5.3: An abstraction with meta-parameters

However, note that all level-expression variables occurring in level-expression parameters in
abstraction definitions are always treated as meta-parameters, so there is no need to make them
explicitly meta.

In general, the term on the left-hand side of an abstraction can have a mixture of normal and
meta parameters. You can define a family of abstractions which differ only in the constant value
of some parameter. However it is an error to make two abstraction definitions with left-hand sides
which have some common instance.

A recently added feature of abstraction definitions is an optional list of conditions. A condition
is simply an alpha-numeric label associated with the abstraction. We intend abstraction conditions
to be used to hold information about abstractions which would be useful to tactics and other parts
of the Nuprl system. For example, abstraction conditions could be used to group abstactions into
categories, and when doing a proof, one could ask for all abstractions in a given category to be
treated in a particular way.

The general form of an abstraction with conditions ¢y, ..., ¢, is:

(e1y...5¢p)::lhs == rhs

In this section, we describe the editor support for entering abstraction definitions. Abstraction
objects are created and viewed as described in Chapter??. You can also view the abstraction for
some term by using the VIEW-ABSTRACTION command. See Section 4.4.8.

!For example, it can be useful to define an abstraction that has some typing information associated with it, but
that unfolds to a term without that information
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(cM-I) | INITIALIZE initialize object / condition
(CM-S) | SELECT-TERM-OPTION | open condition seq

(c-0) OPEN-SEQ-TO-LEFT open slot in cond seq to left

(M-0) OPEN-SEQ-TO-RIGHT | open slot in cond seq to right
(c-M) CYCLE-META-STATUS | make parameter meta / normal
so_varn | INSERT-TERMso_varn | insert second order var with n args

Table 5.1: Editor commands for Abstraction Objects

The editor support commands are summarized in Table 5.1.
When an abstraction object is first visited, it is initialized with an uninstantiated abstraction
definition term. This looks like:

[1hs] == [rhs]

If you delete the whole term in an abstraction object and then give the INITIALIZE command the
object is re-initialized to this state.

The default abstraction definition term has an empty condition sequence as a subterm. You
cannot position a cursor at this sequence because a display form hides it. Use the SELECT-TERM-
OPTION command with a term cursor over the whole abstraction definition to get an abstraction
definition term with an empty term slot for a condition term.

Use the INITIALIZE command with a term cursor at an empty condition sequence slot to initialize
the slot with a condition term. The condition term is much like the term for variables; it has a
single text slot, and otherwise no other display characters. Use OPEN-SEQ-TO-LEFT or OPEN-SEQ-
TO-RIGHT to add additional slots for conditions terms.

To make a parameter into a meta-parameter, position a text cursor in the parameter’s text slot
and use the CYCLE-META-STATUS. If the parameter is already meta, using this twice will cycle
its status back to being a normal parameter. Note that this is not necessary with level-expression
parameters. All level-expression variables are treated as meta.

Second order variable instances are entered on the left and right hand sides of the definition
using the variable{z:v}(a;;...;a,) term where x is the variable’s name, and n > 0. The library
display form object defining the display form for variable{z:v}(ay;...;a,) is named so_varn so
this family of names can be used to reference them. Note that abstraction objects are the only
places where these second-order variable instances are used. When writing propositions, second-
order variable instances are simulated using the so_apply(n) abstraction.
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Chapter 6

Display

6.1 Display Form Definitions

6.1.1 Top Level Structure

def-seq ::= definition ; ;
| definition ;; def-seq
definition ::= format-seq == term
| attr-seq :: format-seq== term
format-seq ::= format
| format format-seq
attr-seq  ::= attribute
| attribute :: atir-seq

Figure 6.1: Display Object Structure

The top level structure of a display form object is summarized by the grammar shown in Figure 6.1.
An object contains one or more display form definitions. Each definition has a term which the
display form applies to, and a sequence of formats that specify how to display the term. A definition
also has an optional sequence of attributes that specify extra information about the definition.
Usually, all the definitions in one object refer to a closely related set of terms. When choosing
a display form to use for a term, the layout algorithm tries definitions in a backward order, so
definitions are usually ordered more general to more specific.

6.1.2 Formats

The various kinds of formats are summarized in Table 6.1. The ‘Name’ column gives the names
by which you can refer to the formats when entering them. The format sequence is always a text
sequence so every alternate format is a text string. Since the text strings are always present, there
is no need to have to enter them explicitly and consequently we don’t give them a name. The
slot formats are for children of the display form. The L,E and * options on the term slot formats
control parenthesization of the slot, and are discussed in Section 6.3. All the formats enclosed
in {}’s control insertion of optional spaces, linebreaking, and indentation. They are discussed in
Section 6.2.
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Display Name Description

string text string

<id:ph> slot text slot

<id:ph:L> | 1slot | term slot

<id:ph:E> | eslot | term slot

<id:ph:*> | sslot | term slot

{space} space | optional space

{—1} pushm | push margin

{3} popm pop margin

{\\a} break | break

{\?a} sbreak | soft break

{[HARD} hzone | start hard break zone
{[SOFT?} szone | start soft break zone
{[LIN} lzone | start linear break zone
{7} ezone | end break zone

Table 6.1: Formats

6.1.2.1 Slots

The 7d in a slot format is the name of the slot. The slot corresponds to the parameter, variable
or subterm of the term on the right-hand side of a definition that has the same name. ph is place-
holder text. This text enclosed within []’s appears in the slot whenever the slot is uninstantiated
in some instance of the definition.

6.1.3 Attributes

Definition attributes are summarized in Table 6.2.

Display Name Description
(e1,...,¢,) | conds conditions
EdAlias(a) | alias | alias for definition input
#Hd(a) ithd head of iteration family
#T1(a) ittl tail of iteration family
Parens parens | parenthesis control
Prec(a) prec precedence

Table 6.2: Attributes

As with the format table, the ‘Name’ column gives the names by which you can refer to the
attributes when entering them.

Conditions provide extra information about a definition to the editor. The argument of the
conds term is a sequence of conditions. Each condition is a term with a single text slot holding the
name of the condition. Use the INITIALIZE command ({(cM-I)) with a term cursor over a condition
sequence slot to insert a condition term.

The alias attribute provides an alternate name which the input editor recognises as refering to
the definition. Alternate names are often convenient abbreviations for the full names of definitions.
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The iteration attributes control selection of a definition by the display layout algorithm. They
are used to come up with convenient notations for iterated structures. They are discussed in
Section 6.4.

The parens and prec attributes both affect parenthesization. See Section 6.3.

The display form that you get for a display form definition when you first open up a display
object assumes there are no attributes, and hides the attribute slot. To open up the attribute slot
of a display form definition that hides the slot, position a term cursor over the whole definition and
use the SELECT-DFORM-OPTION ({CM-S)) command.

6.1.4 Right-hand-side terms

The right-hand-side term is a pattern. A definition applies to some term ¢ if t is an instance of
the rhs term. The display definition matcher has a notion of meta-variable different from that of
Nuprl’s usual matching routines; it has 3 kinds of meta-variable: meta-parameters meta-bound-
variables and meta-terms'. Meta-parameters and meta-bound-variables correspond to text slots on
the left-hand side of a definition, and meta-terms correspond to term slots.

The rhs term is restricted to being a term whose subterms are either constant terms (terms
with no meta-variables) or meta-terms. To enter a meta-term use the name mterm. To make
meta-parameters or meta-bound-variables, position a text cursor in the appropriate parameter or
bound variable slot and give the CYCLE-META-STATUS ((C-M)) command. Display-meta-variables
are redily recognized because they have <> as delimiters.

The rhs term can contain normal parameters, bound variables and variable terms. These must
match exactly for a definition to be applicable.

6.2 Whitespace

6.2.1 Margin Control

The margin control format {—:}(pushm) where ¢ > 0 pushes a new left margin 7 characters to the
right of the format position onto the margin stack. The layout algorithm uses the top of the margin
stack to decide the column to start laying out at after a line break.

The margin control format {«3} (popm) pops the current margin off the top of the margin stack
and restores the left margin to a previous margin.

Usually display forms should have matching pushm’s and popm's.

6.2.2 Line Breaking

Line-breaking formats divide the display into nested break zones. There are 3 kinds of break zone:
hard, linear, and soft. The effect of {\\a} (break) formats depends on the break zone kind:

e In a hard zone, {\\a} always causes a line break.

e In a soft zone, either none or all of the {\\a} are taken.

!The meta-parameters are different from those used in abstraction definitions. To be clear, we sometimes call
those ones abstraction-meta-variables and the ones in display definitions, display-meta-variables.
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e In a linear zone, {\\a} never causes a line break. Instead, its position is filled by the text
string a.

The zones are started and ended by zone delimiters. There is one end delimiter {1} (ezone) for all
kinds of zones. Each kind of zone has its own start delimiter:

o {[HARD} (hzone) starts a hard zone.
o {[SOFT} (szone) starts a soft zone.
o {[LIN} (1zone) starts a linear zone.

A linear zone is special in that all zones nested inside are also forced to be linear. Therefore a
linear zone contains no line-breaks and always is laid out on one line. If a linear zone doesn’t fit
on a single line, the layout algorithm chooses subterms to elide to try and make it fit.

When laying out a soft zone, the layout algorithm first tries treating it as a linear zone. If that
results in any elision, then it treats the zone as a hard zone.

The soft break format {\\7a} sbreak is similar to the break format but is not as sensitive to
the zone kind. Soft breaks in linear zones are never taken, but otherwise, the layout algorithm
uses a separate procedure to choose which soft breaks to take and which not. This procedure uses
various heuristics to try and layout a term sensibly in a given size window with at little elision of
subterms as possible.

Display form format sequences should usually include matching start and end zone formats.

6.2.3 Optional Spaces

The {space} (space) format inserts a single blank character if the character before it isn’t already
a space. Otherwise it has no effect.

6.3 Parenthesization

Automatic parenthesization is controlled by certain display definition attributes, term slot options,
and by definition precedences. A precedence is an element in the precedence order. The order is
determined by the precedence objects in the Nuprl library. A definition is assigned a precedence
by giving it a prec attribute which names some precedence element.

6.3.1 Precedence Objects

Precedence objects collectively introduce a set of precedence elements, and define a partial order
on them.

Table 6.3 shows the components of a precedence object, and the names used to enter them by.
The par, ser, and eq terms are sequence constructors so the standard sequence commands work
on the sequences built with these terms.

Fach display form not explicitly associated with any precedence element is implicitly associated
with a unique precedence element unrelated to all other precedence elements. The uniqueness
implies that two such display forms have unrelated precedence.

The core_1 theory should be consulted to see how a base set of precedences has been set up for
the current Nuprl theories.
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Display Name | Description

[p1l...1p,] | prpar | parallel prec term
(p1>...>py) | prser | serial prec term
{p1=...=p,} | preq | equal prec term

obname prel | element of precedence order
*obnamex prptr | precedence object pointer

Table 6.3: Precedence Object Elements

6.3.2 Parenthesis Selection

The parenthesization of a term slot of a display form is controlled by the parenthesis slot-option of
the term slot in the display form definition (the L, E, or * in the 3rd field), by the parens attribute
of the display form filling the term slot, and the relative precedences of the term slot itself and
the filling term. The precedence of a term slot is usually that of the display form containing it,
although it is possible to assign precedences to individual slots. The parenthesis control works as
follows:

o [t is only possible to parenthesize the term slot if the filling display form has a parens
attribute. If this attribute is absent, the slot is never parenthesized. Therefore the parens
attribute must be explicitly added to a display form definition for that definition to ever be
parenthesized.

e The parenthesis slot-option controls how precedence affects parenthesization. The parenthesis
slot-options have the following meanings:

L Suppress parentheses if display-form precedence is less than child display-form precedence.

E Suppress parentheses if display-form precedence is less than or equal to child display-form
precedence.

* Always suppress parentheses.

Note that the L and E options give the behavior you might expect; if they are used in the defini-
tions of infix display forms for the arithmetic terms plus(a;b), and times(a;b), then plus(a;times(b;c))
is displayed as a + b ¢, but times(a;plus(b;c)) is displayed as a * (b4 ¢). With the L and the E
options you can set up an infix term as being either right or left associative.

The L, E and * characters in the display of term slot formats are display forms for parenthe-
sization control terms. These terms can be entered using the names shown in Table 6.4. The

Display | Name Description
L lparens | L option
E eparens | I option
* sparens | * option

Table 6.4: Slot Options for Parenthesization Control

parenthesization control terms also allow the specification of the delimiter characters used for
parenthesization, and a precedence for the individual slot. No specific editor support has yet been
provided for these features.
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6.4 Iteration

The iteration attributes control choice of display form definition based on immediately-nested
occurrences of the same term. The idea is to group occurrences into iteration families. An iteration
family has a head display form definition and one or more tail definitions. A tail definition can only
be used as an immediate subterm of a head in the same family or another tail in the same family.
Choice of display form is also affected by the use of the iterate variable # as the id of a term slot
format. If # is used in some term slot of a definition, then the definition is only usable if the same
term occurs in the subterm slot that uses the #.

An example should make this clearer. Say we want a set of display forms for A abstraction
terms such that the A character is suppressed on nested occurrences. The following definitions
would work:

A<x:var>.<t:term:E>== lambda(<x>.<t>)

s #HA A ::A<x:var>,<#:term:E>== lambda(<x>.<#>) ;;
#T1 A ::<x:var>.<t:term:E>== lambda(<x>.<t>) ;;

#T1 A ::<x:var>,<#:term:E>== lambda(<x>.<#>) ;;

Using these the term lambda(x.lambda(y.lambda(z.x))) would be displayed as:

AX,Y,Z.X

6.5 Examples

We walk through entry of a display form for the term 3lz:T.P,.
Start by creating a new display form object and viewing it. Enter in the ML top loop:

create disp "test_df" "+scratch"(s-RETURN])
view "test_df"(s-[RETURN])

where +scratch is some suitable position in your library. The window initially looks like:

EDIT DISP test_df
== [rhs]

Click on the first =, to get a text cursor in the empty format sequence on the
left-hand side of the definition. Enter the initial text and a slot for the variable:

(c-#)163!(c-0)slot RETURN x RETURN|var(C-F)

The definition should now look like:
Ji1<x:var>F= [rhs]

Enter the type slot and the second term slot:

:(c-0)sslot RETURN|T RETURN| type(c-F)(c-F)(c-F)
(c-0)eslot RETURN|P RETURN| prop
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The definition should now look like:
Ji1<x:var>:<T:type:*>. <P:prop|:E>== [rhs]

Now enter the right-hand side of the display form. Click on the [rhs] placeholder,
and enter exists_unique(7 .z .P) as an exploded term. See Section 4.5.2 for details on how to do
this. Do not fill in the variable slot or either of the subterm slots. The definition should now look

like:

Ji<x:var>:<T:type:*>. <P:prop:E>== ‘exists_unique{}( [term] ; [binding] . [term])

Click on the left-most term slot and to enter the meta terms and meta variable, key:

mtermRETURN|T RETURN]| x(C-M) RETURN
mtermRETURN|P

The definition is now complete. It should look like:
Ji<x:var>:<T:type:*>. <P:prop:E>== exists_unique{}(<T>;<x>.<Pp)

This definition includes no linebreaking or parenthesization information. The display form has
an open right-hand side, in that there is nothing delimiting the end of the prop slot. We therefore
want the layout algorithm to automatically parenthesize the display form. To add parenthesizing
attributes, click on the second = character, to get a term cursor over the whole
definition, and then enter:

(cM-S) RETURN] (c-0)
to get two empty attribute slots, with a term cursor over the first:
lattr] |::[attr]::3'<x:var>:<T:type:*>. <P:prop|:E>== exists unique{}(<T>;<x>.<P>)

To instantiate the attribute slots enter:

parensRETURN|prec RETURN|exists

To get:

Parens: :Prec(exists|) = <x:var>:<T:type:*>. <P:prop:Ed>== exists_unique{}(<T>;<x>.<P>)

Here, we assign the term the same precedence to 'x:T.P, as is assigned in the standard libraries
to the dz:T.P, term.

We illustrate adding extra formats, by adding a soft-break format such that the ™. separating
the type slot from the prop slot is only included if the break is not taken. Click on
the .7 character and delete it using (c-D). Enter:

(c-0)sbreak[SPACE

click on the }after the ? character in the soft break display form, and enter ..
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6.6 The Layout Algorithm

Describe layout algorithm. and selection of dfs.
e How term matching options affect selection.
o How whitespace considerations affect selection (if at all...).

o Display form iteration
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Chapter 7

Sequents and Proofs

7.1 Introduction

Nuprl’s type theory is formulated in a sequent calculus. The structure of sequents is described in
Section 7.2 and of proofs in Section 7.3.

Both structures are defined in Lisp and are accessible from ML. For convenientce, we use term-
like notation to describe them, although they are not implemented or edited as terms. Perhaps
they will be at some stage in the future.

7.2 Sequent Structure

We write a sequent as
Hy,....H, FC

where (' is the conclusion of the sequent, and , the ¢th hypothesis H; is either an assumption A; or a
type declaration z;:T;, and n > 0. A type declaration z;:7; is considered to bind free occurrences
of x in terms to the right; that is in H;yq1,..., H, and C. Sometimes we refer collectively to the
hypotheses and the conclusion of the sequent as sequent clauses or just clauses. In the older Nuprl
literature, >> instead of the turnstile symbol F is used to seperate the hypothesis list from the
conclusion. The word goal is sometimes used either to refer to a whole sequent or to just the
conclusion. Which should be clear from context.

Usually Nuprl displays sequents vertically and explicitly numbers the hypotheses, so the sequent
Hy,...,H, F Cis displayed as:

1. Hy
n. H,
FC

A sequent can be considered as either a conjecture or a proved truth. As a conjecture one
understands the sequent as expressing the as yet unproved conjecture that the conclusion of the
sequent is deducible from the assumptions and declarations of the sequent. As a proved truth, one
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understands the sequent as expressing that that conclusion of the sequent has been proved true,
given the assumptions and declarations of the sequent.
There are a few details left out of the above account that we now describe.

1. Logic is encoded into Nuprl’s type theory using the propositions-as-types analogy, so all
clauses of sequents are really types. Clauses are made to appear like propositions by using
abstractions. All hypotheses declare variables, but the system currently hides the display of
any variable whose name starts with a % character. We sometimes refer to such variables
invisible variables. When sketching sequents in this document, we suppress variables that
would normally be invisible.

2. Hypotheses can be hidden. Hidden hypotheses are displayed with []’s around the hypothesis’s
type or assumption term. For a discussion of hypothesis hiding, see Section 9.12.

3. Hypothesis variable names have to be distinct.

7.3 Proof Structure

Proofs are tree structures. Using term notation, the class of proofs is the least set of terms such
that

e unrefined(g) is a proof.

o if py,...,p, are proofs, n > 0, then refined(g;7;ps;...;pn) is a proof,
where:

e ¢ is a sequent.

e 1 is a refinement rule. See Section 7.4

The sequent g in the proof refined(g;r;p1;...;p,) or unrefined(g) is referred to as the root
goal, or simply the goal of the proof. Similarly, the goals of the proofs py;...;p, are referred to as
the subgoals of the proof refined(g;r;p1;...;pn)-

A proof is good when is satisfies various conditions, including

1. every sequent in the proof is closed; every free variable of a sequent clause is bound by some
declaration of the sequent,

2. at every refined node of the proof tree, the rule proves the goal sequent, assuming the prov-
ability of the subgoal sequents.

A proof is complete exactly when it is good and contains no unrefined nodes. A proof is incomplete
if it is good but does contain unrefined nodes.

Fach theorem object in Nuprl’s library contains one proof. The root goal of this proof is
sometimes referred to as the main goal of the theorem. It always has no hypotheses.
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7.4 Refinement Rules

7.4.1 Primitive Refinement Rules

The primitive refinement rules are all introduced by rule objects. The current system has primitive
rules for a constructive type-theory, closely related to Martin-L&f type-theory. All proofs in the
Nuprl system are eventually justified by these primitive rules. More precisely, the correctness of
every Nuprl proof depends only on the correctness of these rules, and of Nuprl’s refiner. The refiner
is a fixed piece of Lisp code which applies primitive rules to unrefined leaves of proofs. Users rarely
invoke primitive rules directly; they are at too low a level, and one has to understand how logic is
coded within type-theory. Almost always, tactics are used instead.

7.4.2 Tactic Rules

As explained in detail in Chapter 9, tactics are ML functions which enable one to automate ap-
plication of primitive rules. A simplified but conceptually useful idea of a tactic, is as a function
mapping proofs to proofs. If one applies a tactic in ML to an unrefined proof and the tactic doesn’t
fail, then the tactic returns a proof built (usually) from primitive rules with 0 or more unrefined
leaves.

We give a description of what a tactic rule is, and what happens when a tactic is executed as
a refinement rule. Assume that a proof editor window is viewing some proof node unrefined(g)
and that one enters TacticText, the text of some suitable tactic as the refinement rule.

1. TacticText is parsed by the ML parser into a tactic, and is applied to the proof node
unrefined(g). Let the resulting proof term be p. Note that the root goal of p is always
the same as g.

2. pis not simply inserted back into the proof tree, replacing unrefined(g). Rather it is stored
in a tactic rule along with the ML text of the tactic. Let us represent the tactic rule by the
term tactic_rule( TacticText; p).

3. What is inserted back into the proof tree to replace unrefined(g) is
refined(g; tactic_rule( TacticText; p); p1;...;pn)-

Here, n > 0, and py;...;p, are all the unrefined leaf nodes of the proof p in the same
left-right order as they occur in p.

The tactic rule hides the proof tree p. When one views a proof term, or a tactic rule refinement,
one only ever sees the text of the tactic. From a logical point of view, it is not strictly necessary to
keep p around at all, after the tactic has executed. However, it is necessary for extraction purposes.

In the event that a tactic is applied as a refinement rule to an already refined proof term, the
proof term is first changed to an unrefined proof, discarding the existing refinement rule and all
the sub-proofs, before it is passed to the tactic.

Running a tactic as a refinement rule makes it appear in a proof as a high level rule of inference,
and consequently greatly increases the readability of proofs.

The TacticText is represented as an !'ml_text alternating sequence and has structure identical
to that of ML library objects.

62



7.4.3 Reflection Rules
7.5 Transformation Tactics

Transformation tactics have the same type as normal tactics. However, they can be run on any node
of a proof, not just leaf nodes. Examples of transformation tactics can be found in Section 9.11.

When a transformation tactic is run on a proof p, the proof editor replaces p with the proof
resulting from the tactic; it doesn’t create a special proof node that just has the unproven subgoals
of the resulting proof as its immediate subgoals. Nor is the text of the transformation tactic saved
anywhere.

7.6 Proof Editor

The proof editor is designed principally to support the ‘top-down’ refinement style generation of
proofs. The refinement style entails repeatedly choosing an unrefined leaf node of a proof and a
rule (usually a tactic) to try on that node. If the rule applies, the Nuprl system changes the node
to a refined node, and automatically generates appropriate children nodes.

The editor also supports the application of transformation tactics to proofs. These are usually
applied to already refined nodes of a proof tree and either change the structure of the proof they
are applied to or have some side effect. Transformation tactics are described in Section 7.5.

The proof editor generates windows onto sections of proofs. One can have windows open on
different proofs at the same time, and even multiple windows onto the same proof. In the latter
event, the windows become ‘read-only’.

Proofs associated with theorem objects are not first copied when they are viewed with the proof
editor, so all changes made to proofs take effect immediately. This is in contrast to the situation
with the term editor where changes are only committed when you exit an object or ask for changes
to be explicitly saved. If you want to make tentative changes to a section of a proof, you can use
the Mark transformation tactic to first make a good copy of that section, or you can make a copy
of the whole theorem object.

7.6.1 Proof Window Format

Each proof window is associated with a node of a proof. It shows the goal sequent at that node,
the refinement rule if any at that node and any immediate subgoals.
Figure 7.1 shows an example of a window onto a refined node of a proof, and Figure 7.2 shows an
example of a window onto an unrefined node of a proof.

The numbered parts of these windows are as follows:

(1) The EDIT indicates that the proof is being viewed in edit mode. In this mode the proof can
be changed. This is replaced by SHOW if the proof is viewed in the read-only mode. The THM
indicates that a theorem object is being viewed, and cantor is the name of the theorem.

(2 The # indicates that this proof node is considered incomplete. Other symbols used here, are *
for complete, and - for bad. the top 1 1 and the top 1 1 2 are tree addresses of the nodes
being viewed. Figure 7.2 shows the 1st child of the 1st child of the root of the proof, and
Figure 7.1 shows the 2nd child of the proof node in Figure 7.2.
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(DEDIT THM cantor

@# top 1 1

®1. f: N —= N —- N
2. Vg:N —- N. Ji:N. fi=ge€eN - N
F False

(»BY With ’An.f n n + 1’ (D 2) THENW Auto

®1* 2. n: N
Fo< fnn+1

@®2# 2. Ji:N. fi=An.fnn+1€N->N
F False

Figure 7.1: Proof Window on Refined Proof Node

(DEDIT THM cantor

@# top 1 1 2

f: N - N — N
Jdi:N., fi=AXn.fnn+1€N —=N

F False

(3BY <refinement rule>

Figure 7.2: Proof Window on Unrefined Proof Node
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)

This is the goal sequent of the proof node.

(#® This is a tactic which was executed on the goal (3 above in order to generate the subgoals
(®below. The BY is part of the proof node display, and is not part of the tactic.

)

This is the refinement rule placeholder.

®

These are the subgoals of the proof node. Each one is numbered. The * or # by the subgoal
number shows the status of the subproof. The symbols are the same as those for the goal.
Note that for brevity, only hypotheses which have changed or been added are displayed in
the subgoal sequents.

Sometimes the proof window is too short to display all the goal, rule, and subgoals. In this case
the cursor motion commands described in section ??? will automatically scroll the window. One
can of course also resize the window.

7.6.2 Proof Motion Commands

(M-B) BACK-PART move back part.sibling to immediate left
(M-F) FORWARD-PART move to sibling to immediate right
(M-4) FIRST-PART move to left-most sibling

(M-E) LAST-PART move to right-most sibling

(M-P) UP-TO-PARENT move up to previous level of proof
(M-<) UP-TO-TOP move up to top of proof

(M-N) DOWN-TO-CHILD move down to next level of proof
NEXT-UNREFINED-LEAF | jump to next unrefined node

Table 7.1: Proof Motion Commands

The keyboard commands for moving about proofs are summarized in Table 7.1. The commands
closely match a subset of the term editor motion commands (described in Section 4.4.2). A part of
the window is a either a goal sequent, a refinement rule, a rule placeholder or a subgoal.

The FORWARD-PART and BACK-PART commands move the cursor within a proof window from
part to part, if necessary scrolling the window. FIRST-PART moves the cursor to the goal and LAST-
PART moves the cursor to the last subgoal if there are any subgoals; otherwise it moves the cursor
to the refinement rule part.

The UP-TO-PARENT command, executed with a cursor in any part of the window, shifts the
window one level up the proof tree. DOWN-TO-CHILD, executed with the cursor over a subgoal part,
shifts the window down the proof tree to that subgoal. The NEXT-UNREFINED-LEAF command shifts
the window to the next unrefined proof node in a preorder traversal of the proof tree. If there are
none, NEXT-UNREFINED-LEAF shifts the window to the root of the proof.

The mouse can also be used to move about a proof. See Section 7.6.4 for details. Most users
find these easier to use than the key bindings.

7.6.3 Opening, Closing, and Changing Windows
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(C-Z) | EXIT-PROOF close proof window

(c-J) | JUMP-NEXT-WINDOW | jump to next window

TAB|] | JUMP-ML jump to ML top-loop

(c-S) | SELECT open term window onto rule or sequent
(c-T) | TRANSFORM open term window for transformation tactic

Table 7.2: Commands For Opening and Closing and Changing Windows

The relevant proof editor commands are shown in Table 7.2, and described below. the select and
TRANSFORM commands open up term editor windows. You can edit ML in these windows in the
same way you would edit ML in an ML object or in the ML Top Loop.

7.6.3.1 Opening a Proof Window

A proof editor window is opened onto a proof in a theorem object whenever the ML view function
is applied to the object’s name in the ML top-loop. If view is used on an theorem object with
an compressed proof, expansion of the proof is forced. This may take some time, especially if the
proof is large. Section 7.7 describes proof compression and expansion.

7.6.3.2 Closing a Proof Window

To close a proof window, use EXIT PROOF.

7.6.3.3 Changing Windows

JUMP-NEXT-WINDOW cycles the cursor through all the open proof and term windows, except the
ML-top-loop window. JuMP-ML moves the Nuprl cursor to the ML top-loop.

7.6.3.4 Editing The Main Goal

EDIT THM cantor
? top <main proof goal>

Figure 7.3: A Proof Window on a New Proof

When a new proof window is opened, the window appears as in Figure 7.3. By using SELECT with
the cursor over <main proof goal> a term window is opened up to allow one to enter the main
goal of the proof.

One can also use SELECT on the main goals of incomplete or complete proofs. For example,
one might want to copy the main goal of one theorem and use it as the basis for the main goal of
another, or one might want to correct a mis-stated main goal. Note however that if a main goal is
destructively modified and checked, then any existing proof is lost. As explained in Section 4.4.7,
the window is checked whenever the EXIT term window command is used. If the window is not
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modified but checked, or modified and then quitted, then any existing proof will not be changed.
Warning: a window counts as being modified even if changes have been made and then undone, so
it looks the same as it originally was.

7.6.3.5 Editing a Refinement Rule

A refinement rule window is opened whenever the SELECT COMMAND is used with the proof cursor
over the rule place-holder. (For example see IFigure 7.2) The window always has the title EDIT rule
of theorem where theorem is the name of the library object holding the proof. A new refinement
rule window is always initialized to allow one to type in an ML tactic. The structure and special
editing commands for this term window are the same as for ML objects. Soon, it will be possible
to initialize the refinement rule window to hold other kinds of rules (For example a primitive rule).
We will describe special term editor support for these options here. Most users will only use tactics
in refinement rule windows. After a rule has been keyed in, and the term window EXIT command
has been given, Nuprl parses the rule and tries to apply it to the goal of the current proof. If the
rule succeeds the proof window is redrawn with new statuses and subgoals as necessary. If it fails
then one of two things may happen. If the error is severe, the status of the node (and the proof)
will be set to bad, an error message will appear in the command/status window, and the rule will
be set to ?7bad refinement rule??. If the error is mild and due to a missing input, Nuprl will
display some diagnostic message and leave the rule window on the screen so that it can be fixed.

One can also use SELECT on existing refinement rules. For example, one might want to copy one
rule in order to use it as the basis of another or one might want to change the rule. If a refinement
rule is destructively modified and checked, then any existing subproofs below the rule are lost. As
explained in Section 4.4.7, the window is checked whenever the EXIT term window command is
used. If the window is not modified but checked, or modified and then quitted, then any existing
proof will not be changed.

7.6.3.6 Viewing Subgoal Sequents

If sELECT is invoked on any sequent of a proof but the main goal, a read-only term window onto
that subgoal is generated. This is useful, for example, if one wants to use a term from a sequent as
an argument to a tactic, and one doesn’t want to have to retype in the term.

Should describe here special editor support for subgoal sequents. e.g. what are represented as
alternating lists?%?

7.6.3.7 Editing a Transformation Tactic

To invoke a transformation tactic at some node of a proof, position a proof editor window at
that node and use the TRANSFORM command. This opens up a transformation-tactic window and
initializes it to take tactic text. Type the name of the tactic and any arguments into the window
and then use the EXIT term editor command. Nuprl will apply the tactic and redisplay the proof
window to show any effects. If the expression entered doesn’t parse or typecheck, a diagnostic
message is printed and the window is left as is. If the tranformation tactic fails, the proof is left
unchanged.
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MOUSE-RIGHT] | MOUSE-SELECT | select main goal, rule or sequent
MOUSE-LEFT] | MOUSE-JUMP jump to window / parent / child

Table 7.3: Mouse Commands for Proof Windows

7.6.4 Mouse Commands

The mouse commands are shown in Table 7.3 The mouse can be used for shifting a proof window
about a proof, jumping between different windows, and selecting the main goal, rules, and sequents
displayed in a proof window.

7.7 Proof Compression and Expansion

7.7.1 Introduction

When a theory is dumped to a file, proofs are stored in a compressed format. This format retains
only the main goal, the text of tactics in tactic rules, and the text of primitive rules not buried inside
tactic rules. All other sequents, and all subproofs associated with tactic rules, are discarded. Thus
the dumped representation contains essentially just the text that a user would type to reconstruct
the proof.

This format contains just enough information to regenerate the full proof data-structure. When
a theory is loaded, the loaded proofs are retained in their compressed format. When a proof is
needed, as when it is to be viewed, checked, or extracted from, then the system will reconstruct
the usual proof tree.

The reconstruction can be time consuming since all the tactics used to construct the proof must
be re-executed. Also, if the tactics that were used to construct the proofs have since been modified,
the reconstruction may fail.

When a theorem object is extracted from, the extraction is stored with the theorem in the
library. When a theorem object is dumped to a file, if it has an extraction, then the extraction is
also dumped. This feature can sometimes reduce the need for proof expansion.

The proof-script of a theorem is updated whenever a complete proof of the theorem is built.
Note however that it is not updated if expansion of a previously complete theorem results in an
incomplete theorem. This is to give the user a chance to fix the proof script. The proof-script of a
theorem is also updated when a theorem is dumped to a file, and when the proof is compressed.

7.7.2 Editing Proof Scripts

Editing facilities are provided for proof-scripts, as are tactics for explicitly executing a proof-script
on a node of a proof. These are particularly of use when fixing proof-scripts that have broken due
to changes in tactics or the library context.

Proof scripts are Lisp data structures. They are made editable by translating to and from
‘proof-script terms’ or ‘ps-terms’ for short. An example display of a ps-term is:
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TACTIC top :
(Unfold ‘not‘ 0
THENM D O

THENM InstConcl [An.f n n + 111 ...?)

SUBTREES
TACTIC top 1 :

(with (il (EqHD 3) THENM Reduce 3 ...a)

SUBTREES
TACTIC top 1 1 :
Auto
SUBTREES
<no subtrees>
END
END
END

Figure 7.4 summarizes the structure of ps-terms.

node name alternatives / structure alias
pscript-node  ::= TACTIC \\ tactic \\ SUBTREES subiree* END psnode
[ TACTIC addr : \\ tactic \\ SUBTREES subtree* END
subtree* ::=  subtree \\ ... \\ subtree | <no subtrees>
subtree ::= pscript-node

The ‘alias’ column gives the name by which proof-script nodes can be entered. Proof-script
subtrees are considered to be a term sequence, and the usual term sequence editing commands
work with them. The addr fields in ps-terms are for tree addresses in the same format as used in
proofs. They serve solely as a guide the user; they have no logical significance. Users should never
need to explicitly fill these addresses in. Instead, the addresses are generated by ML functions that

build proof script terms.

Useful ML functions include:

Figure 7.4: Proof-Script Terms

psterm_of thm object nam:tok = psierm:term

Takes the name nam of a theorem in the library and returns its proof-script term psterm.

In doing so, it appropriately fills in the address fields of the proof-script term.

psterm_anno psierm:term =

psterm’: term
Adds address annotations to a proof-script term, ignoring any previous annotations.

RunPSTerm psterm:term = T:tactic
A transformation tactic for executing proof-script terms.
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Chapter 8

Rule Interpreter

8.1 Term Structure of Rules

Rule definitions are expressed as ‘terms’ in the sense described in Chapter 4. They are normally
stored in library objects of kind rule.

Figure 8.1 shows the basic tree structure of rule terms. I have included kinds of ‘virtual tree
nodes’ in this description. These virtual nodes do not correspond to term constructors used in
building up rules, but they do help in explaining the structure of rule terms.

Italic type is used in Figure 8.1 for kinds of tree nodes that correspond to terms and term slots.
Roman type is used for tree nodes that correspond to text strings and text slots. \\ indicates a
linebreak in a display form, \null indicates a display form with ‘zero width’, and  is the usual
invisible space. The suffix * character on a node-kind names indicate a sequence of nodes. The
pri-term node kind is for terms in Nuprl’s object language.

Names for the term constructors that are suitable for entering the constructors are shown in
the ‘alias’ column. The term constructors for sequences do not need to be entered explicitly by
name. The editor recognizes the context of each sequence, and sequence items can be added and
deleted using the (c-0) and (c-C) sequence commands.

For rule terms to be well-formed, there are several extra constraints on their structure. These
include:

e substitution terms can only occur in

— the concl or hyp-item term of a subgoal,
— the right-hand subterm of a matching-constraint,

— extract term of a goal.

e there should be a hyp-index term as a rule arg for each hyp-list hyp-item that is followed by
a hyp hyp-item in the goal of the rule definition.

e Adjacent hyp-items should not be both wvariables.

o The extract of a subgoal (if it exists) should always be a variable.

8.2 Semantics of Rule Interpreter
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node name alternatives / structure physical node name alias
rule-def ::= goal \\BY rule \\ subgoal* simple-rule rldef
| goal \\ BY rule \\ constraint \\ subgoal* constrained-rule crldef
goal ::= sequent
subgoal® = subgoal \\ ... \\ subgoal | No Subgoals
subgoal = sequent
sequent ::= hyp-item™ F concl no-ext-sequent seq
| hyp-item™ F concl ext extract ext-sequent eseq
hyp-item™* ::=  hyp-item , ... , hyp-item | \null
hyp-item = hyp | hyp-list
hyp ::= variable : subst-term normal-declaration  decl
| [variable : subst-term] hidden-declaration  hdecl
hyp-list  ::= wvariable | substitution
concl = subst-term
extract = subst-term
constraint ::= Let term = subst-term matching-let mlet
| Let arg* = Call{lisp-fun-name} lisp-let llet
rule ::= rule-name arg* rule
arg* ::= argy ... yarg | O
arg ::= wvariable
| nat-number
[ # hyp-index hypi
| #hyp-num hyp-index-n hypind
| level{level} level-exp level
|  parm-sub{parm-sub} parm-substitution parmsub
subst-term =  pri-term | substitution
substitution ::= wvariable[pri-term/variable] subst-1 subst
| variable [pritm,pritm/var, var] subst-2 subst2
| variable [pritm, pritm, pritm/var var,var] subst-3 subst3
| variable [parm-sub] subst-parms substp
variable ::= variable var-name
nat-number = natural nat-digits

Figure 8.1: Structure of Rules
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Chapter 9

Tactics

9.1 Introduction

9.1.1 Conventions

For brevity, we assume unless otherwise stated that arguments to tactics have the following types

and uses:
Tx : tactic
cx : int clause indez.
i* : int hypothesis indez.
t* : term term of Nuprl’s type theory
n*x : tok name of lemma object in library
ax . tok name of abstraction object in library
vk : var variables in terms of Nuprl’s object language
1* : tok subgoal label
p* : proof current goal

An s suffix on the name of an argument indicates that it is a list. For example vs is considered
to have type var list.

9.1.2 Universes and Level Expressions

In Nuprl’s type theory, types are grouped together into universes. Types built from the base types
such as Z or Atom using the various type constructors are in universe Uj. The subscript 1 is the
level of the universe. Types built from universe terms with level at most 7, are in universe U, ;.
Universe membership is cumulative; each universe also includes all the types in lower universes.

Since propositions are encoded as types, propositions reside in universes too. In keeping
with the propositions-as-types encoding, we define a family of propositional universe abstractions
Py...P;..., which unfold to the corresponding primitive type universe terms U;...U;....

If one is only allowed to use constant levels for universes, one often has to choose arbitrarily
levels for theorems. One would then find that one needed theorems which were stated at a higher
level, and would have to reprove those theorems. This was the case in Nuprl V3.

Nuprl V4 allows one to prove theorems which are implicitly quantified over universe levels.
Quantification is achieved by parameterizing universe terms by level expressions rather than natural
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number constants. The syntax of level expressions is given by the grammar:

L

The v are level-expression variables. v can be any alphanumeric string. These variables are
implicitly quantified over all positive integer levels. the k are level expression constants. k& can
be any positive integer. The 7 are level expression increments. ¢ can be any non-negative integer.
The expression L i is interpreted as standing for levels L +¢. L’ is an abbreviation for L 1. The
expression [Lq|---|L,] is interpreted as being the maximum of expressions Ly ---L,.

Usually when stating theorems, only level expressions of the form v and v’ need be used. Other
expressions get automatically created by tactics. Further, it is normally sufficient to use a single
level-expression variable throughout a theorem statement. For example, we normally prove the
theorem:

VAP, VB:P;,.A= (B = A)
rather than

VAP,YB:P; A= (B = A)

9.1.3 Formula Structure

Many of Nuprl’s tactics work on formulae generated by the grammar

P Vz:A. P | Q=P | P<Q

PAP| PP
R

where A is a type, and R is a propositional term not of the above form. We call these general uni-
versal formulae or just universal formulae. They are sometimes called positive definite formulae or
horn clauses. We call the formulae generated by this grammar without the A and <= connectives,
simple universal formulae. We call the proposition R, a consequent and each @), an antecedent.
Occasionally we refer to the types A as type antecedents.

We view a general universal formula as being composed of several simple formulae, one for
each consequent. The simple components are numbered from 1 up, starting with the leftmost
consequent.

Such formulae are the standard way of summarizing derived rules of inference, and are used as
such by the forward and backward chaining tactics. Often, a consequent R of a formula will be an
equivalence relation, in which case the formula can be used as a rewrite rule by the rewrite package.

Occasionally, one has a universal formulae, where the outermost constructor of R is also one
of the constructors which makes up the universal formulae. In this case, one can surround R by
a guard abstraction. A guard abstraction takes a single subterm as argument and unfolds to this
subterm. The tactics which take apart universal formulae recognise and automatically remove
guard abstractions, so the user rarely has to explicitly unfold them.
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9.1.4 Soft Abstractions

Certain abstractions can be designated as soft. Some tactics treat soft abstractions as being trans-
parent — those tactics behave as if all soft abstractions had first been unfolded. In practice, those
tactics only unfold soft abstractions when they need to and for the most part are careful not to
leave unfolded soft abstractions in the subgoals that they generate.

Specific tactics and functions which unfold soft abstractions are:

e The MemCD and EqCD tactics. For example, if MemCD is run on a sequent with conclusion
F ¢t € T where t is soft and no well formedness lemmas exist for ¢, then it unfolds .

e The NthHyp, NthDecl, Eq and Inclusion tactics unfold soft abstractions in the relevant
clauses.

e Most tactics using matching routines treat soft abstractions as transparent. For example the
forward and backward chaining tactics, and the atomic rewrite conversions based on lemmas
and hyps.

In the basic libraries, the soft abstractions are

member teT =gef t=teT
nequal t#yel =45 —-(z=yeTl)
prop P; =4e; U;

and AANB =def AXB

or AV B =def A+ B

implies A= B =4y A— B
rev_implies A< B =4ef B=>A

iff As B =def (A:>B)/\(A<:B)
exists Jz:A. B, =4 :AX DB,

all Ve:A. By =45 :A— B,

ge ] =def J <0

gt i>] =def J <1

lelt i<j<k =g (U<HAN(G<Ek)
lele i<j<k =45 (<IN (GLE)

The logic abstractions (and, or, implies, exists, all) are made soft because the well formed-
ness rule for the underlying primitive term is simpler and more efficient than the well formedness
lemma would be. The softness is also useful when one wishes to blurr the distinction between
propositions and types, for example when reasoning explicitly about the inhabitants of propositions.
member, nequal, rev_implies, ge and gt are soft principally because it can simplify matching.

Abstractions are not soft by default. They are declared soft by supplying their opids to the
function add_soft_abs : tok list -> unit. Instances of this function are usually kept in ML
objects in close proximity to the abstraction definitions that they are declaring soft. For an example
use of add_soft_abs, see the object soft_ab_decls in the core_2 theory.

9.1.5 The Sequent

Sequents are introduced in Section 7.2. We describe here some specific tactic-related details.
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Hypotheses are conventionally numbered from left to right, starting from 1. These hypothesis
numbers are displayed by the proof editor, and tactics usually refer to hyps by these numbers.
Sometimes, it is convenient to consider the hyps numbered from right to left, and for this reason
tactics consider a hyp list Hq,..., H, to also be numbered H_,,..., H_;. Occasionally, the index
n+ 1 or 0 is used to refer to the hyp position to the right of the last hyp.

There are tactics which work in similar ways on both hyps and the concl. In this case, we call
the hyps and concl collectively clauses, refer to the concl as clause 0, and hyp %, ¢ # 0 as clause i.
So far, we have not encountered tactics where we would want to both refer to the position after the
last hyp as clause 0 and refer to the conclusion, so this numbering scheme has not caused problems.

When we want to indicate explicitly the number of a hyp in a schematic sequent, we prefix the
hyp with the number followed by a period. So for example, if hyp 7 is proposition P, we write the
hyp as 7. P.

Tactics currently use the visibility of the variable as an indication of whether it is ever used
in subsequent hyps or the concl. Some tactics working on hyps are more efficient when they
work on hyps whose variables are unused. The variables declared in a hypothesis list must all be
distinct. Tactics are careful to use invisible variables for new hypotheses that are to be considered
assumptions rather than declarations.

9.1.6 Proof Annotations

Nuprl proof terms (ML terms of type proof) can be annotated with extra information which isn’t
relevant to the logical correctness of a proof. Nuprl currently supports two kinds of annotations;
goal labels and tactic arguments.

9.1.6.1 Goal Labels

A Nuprl tactic generates various kinds of subgoals, and often subsequent tactics want to discriminate
on subgoal kind. Sometimes a subgoal’s kind can be deduced directly from its structure, but this
can be a error-prone process and so tactics attach explicit labels to subgoals indicating their kind.
Labels take the form of an ML token, and an optional number. Examples of labels are main, upcase
and wf. Most descriptions of tactics include information on subgoal labelling. It is also a simple
matter to find out what labels are generated by experimentation.

The tacticals which discriminate on labels are described in the tacticals section below. For
convenience, labels are divided into the the classes main and auz. The discriminating tacticals
allow one to select either subgoals with a particular label, or subgoals of one of the two classes.
One selects a class by using one of the class names main or aux.!

Sometimes tactics generate a set of subgoals which are all the same kind, but where the order
of the subgoals is important. The number labels are used to discriminate between these subgoals.

Labels used not to be visible when editing proofs with the proof editor and are therefore some-
times known as hidden labels.

Label related tactics are:

AddHiddenLabel lab
Add hidden label 1ab to the current goal.

'main is currently used as both a class name, and a particular label name, so there is currently no way to select
only subgoals in class main with label main.
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AddHiddenLabelAndNumber lab i
Add hidden label 1ab to the current goal along with the integer label i.

UnhideLabel
Make the hidden label on a goal visible. This wraps a special abstraction around the conclusion
term of the goal which makes the label visible. Since the ‘hidden’ labels are usually visible, this
tactic is no longer that necessary.

RemovelLabel
Remove a visible label.
See Section 9.3.2 for how to discriminate on labels.

9.1.6.2 Tactic Arguments

Unlike Lisp functions, ML functions cannot take optional arguments, although it is natural to want
to write tactics which do take optional arguments. One approach is to provide a set of variants of
each tactic for the most common combinations of arguments. This can be confusing, and places
an extra burden on the user who has to keep track of these variants. Nuprl V4 allows optional
arguments to be passed to tactics by attaching these arguments to the proof argument which all
tactics operate on. Currently argument types of int, tactic, term, tok, var and (var # term)
list are supported. Each argument is given a token label, and arguments are looked up by these
labels. Sets of arguments are maintained on a stack, so nesting of tactics which use optional
arguments is possible.

Note that some tactics do useful preprocessing on some of their arguments, and in these cases
there would be a performance penalty if such arguments were supplied, annotated to the proof.

Tactic arguments are also used for the analogy tactics. See the relevant section below.

Tacticals for manipulating these arguments are:

With (t:term) T
Runs T with t as a ‘t1¢ argument.

New ([vi;...;vn] : wvar list) T
Runs T with v1 to vn as arguments ‘v1‘ to ‘vn‘.

At (U:term) T
Runs T with U as a ‘universe‘ argument. Term U should either be either a type universe or a
propositional universe term.

Using (sub:(var # term) list) T
Runs T with the substitution sub as a sub argument.

Sel (n:int) T
Runs T with the integer n as an n argument. Used for selecting a simple component of a universal
formula or a subterm of a term.
These tactics are all special cases of:

WithArgs (args: (tok # arg) list) T
Run T with the arguments in args on the top of the stack. arg is an ML abstract data type,
defined as the disjoint union of the types listed above. There exist injection and projection
functions for each of the types listed above.
Fach tactic description includes information on the optional arguments (if any) that it takes.
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9.1.7 Matching and Substitution

Nuprl has complex matching routines, which allow for automatic instantiation of universal formulae
in a variety of cases. Given a pattern term P and instance term I, we say that I matches P, if
there exists a substitution # such that I R #P. For many purposes, R is a — 3 equality, but on
some occasions it is useful to use a slightly weaker R. The weaker R allows level expressions in [
and OP to be related by an order relation rather than an equivalence relation. The weaker R also
can allow I and 8P to differ by the folding or unfolding of soft abstractions.

Since matching is all about guessing substitutions, we describe first the possible kinds of sub-
stitution.

1. First Order Term
We replace a variable term free in P by some other term. For example, if P = 2 4+ y and
6 = [z — 3], then I = 34 y. We call such substitution first order because in 6, each variable
is bound to a first-order term rather than a higher-order term. (See next item).

2. Second Order Term
Second-order terms are a generalization of terms. They can be thought of as ‘terms with
holes’, terms with zero or more subtrees missing. A second-order term can be represented
as a pair of a variable list and a first-order term, the first-order term being generated from
the second-order term by filling the holes with variables from the variable list. Naturally
the hole-filling variables need to be distinct from any other variables in the term to avoid
confusion. We will write a second-order term as w1, ..., wy.tu, .. w,-

A second-order variable instance has form v[a;;...;a,], where v is the variable itself, and
ai,...,a, are its arguments. A second-order substitution is a list of second-order bindings,
pairs of second-order variables and the second-order terms they are bound to. The result
of applying the binding [v — w1,...,wy.ty, . w,] to the variable instance v[aq;...;a,], is
the term ?,, . 4, — the second-order variable’s arguments filling the holes of the second-order
term.

Second order substitution is useful for instantiating pattern terms involving binding structure.
For example the second-order substitution [P +— i.i > 0] applied to the pattern Vz:N.P[z]
yields the instance Vz:N.z > 0.

3. Parameter
Nuprl terms can be parameterized by families of objects such as natural numbers and tokens.
When defining abstractions using such parameters, one replaces an instance of a parameter
by a parameter variable. Such parameter variables are replaced by parameter constants using
parameter substitution.

4. Level Expression
Level expression substitution involves replacing level expression variables within level expres-
sion parameters by other level expressions.

5. Bound Variable
Such substitutions are useful for alpha-conversion of terms.
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Matching involves recursively comparing the structure of an instance term against that of a
pattern term. For a match to possibly succeed, the structures must only disagree at positions
where there is some kind of variable in the pattern. Each disagreement must generate or confirm
a binding for that variable.

The kinds of matches of instance parts to some sort of variable are:

1.

Term to First-Order Variable Term

For example, the instance 2+ 2 matches the pattern z 4+ x giving the first-order term binding
[z — 2]. In general, since instance terms also contain variable terms, the match routine dis-
tinguishes between variable terms in the pattern which can and cannot take part in matching.
The variable terms which do take part are called meta-variables. In the example above, the
variable z is considered a meta-variable. If a meta-variable occurs more than once, then all
matches for it must be alpha-equal.

. Term to Second-Order Variable Term

In addition to making distinction between meta and non-meta variable terms, The match rou-
tines distinguishes between active second-order variables and passive second-order variables.
Active second-order variables generate bindings. Passive second-order variables are used to
confirm matches generated by other active second-order variables.

For example, with P a second-order meta-variable, the instance Vi:N. ¢ > 0 matches the
pattern Yz:N. P[z], giving the second-order term binding [P — 7.z > 0].

. Parameter Constant to Parameter Variable

For example, the instance term apple{cox:tok} matches the pattern term apple{$x:tok}
giving the parameter binding $x — cox.

. Bound Variable to Bound Variable

For example, the instance term Az. z matches the pattern term Ay. y, giving the bound
variable binding y — z.

Level Expression to Level Expression

This kind of matching is rather complex, since we sometimes desire that the pattern, when
instantiated with the result of the match, be related to the instance by an order relation
rather than an equality. For example, the instance U; X U; might match the the pattern
Ur X Uy, ) giving a level expression substitution of [k +— [i j], n + j]. The directions of the
inequalities between level expressions in the instance and instantiated pattern are dependent
on the position of the level expressions in the terms. They are usually chosen such that there
is a certain inclusion relation between the instance and the instantiated pattern when each is
considered as a type.

Term to first-order variable, term to second-order variable, and bound variable matching is always
used in tactics which do matching. Parameter matching is only used when folding or unfolding
abstractions. Level expression matching is only used by matching tactics which refer to lemmas.
Unless otherwise stated, all tactics do soft matching - if necessary they will try to unfold soft
abstractions to make a match go through.

Second-order variable instances cannot appear in Nuprl sequents, nor can second-order terms.
Instead, we simulate them using respectively application, and lambda abstraction. Specifically, we
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define families of abstract terms with so_apply and so_lambda. (We need families to cope with
the different possible arities.)

Often, when we match against the consequent of a lemma, we cannot obtain all the bindings
to instantiate the lemma directly from the match. In these cases, we try to extend the match by
inferring types of right-hand sides of existing bindings, and matching those inferred types against
the type declarations in the lemma of the left-hand-sides of the bindings. For example, the typing
lemma for the length function is:

VA:U,.VI:A List. length(/) € N

Consider the goal + 1length(3::2::1:[]) € N. A match of the concl of this goal against the
consequent of the pattern gives the binding [ — 3::2::1::[], but doesn’t give a binding for A. However,
we can get the binding A — Z by matching the inferred type of 3::2::1::[] which is ZList, against
the declaration type of [, which is AList. Similarly, by inferring the universe which Z inhabits, we
can get a binding for the universe level 1.

For convenience, we inject the different kinds of bindings into the single type var # term. A
pair of this type is interpreted according to the first entry in the following table which it matches.
(Equating ML objects of type var and the objects of type tok they are isomorphic to.)

pattern interpretation

< v,solambda(zs.t’) > The higher-order binding v — zs.t/

< v,parameter{le:1} > The level exp binding v — le

< v,parameter{w:v} > The bound variable binding v — w

< v,parameter{p:x} > The parameter variable binding v — p

<wv,1> The first-order binding v +— ¢

Most tactics which do matching, take an optional sub argument which can be used to provide

bindings which the match fails to find, or to override matches which are found.

9.2 Basic

9.2.1 Structural

Id
The identity tactic.
Fail
A tactic which always fails. Usually used inside other tactics.
NthHyp i
Proves goals of form ... A... F A where A is the ith hypothesis.
NthDecl i
Proves goals of form ...2:T... b 2 € T or ...aTldots - z = x € T or where z:T is the ith
declaration.
AssertAt j t
Assert term t before hypothesis j. Generates main subgoal with t asserted, and assertion
subgoal to prove t.
Assert t
=4ef AssertAt O t. Assert t as last hypothesis.
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MoveToHyp j i

Move hyp j to before hyp i.
MoveToConcl j

If hyp j is a proposition,

JAFEC
BY MoveToConcly

main ...... FA=C
If hyp j is a declaration,
gk C

BY MoveToConcly

main ...... F Va:T.C

MoveToConcl first invokes itself recursively on any hyp which might depend on hyp j.
MoveDepHypsToConcl j
Use MoveToConcl to move hyps which use variable declared by hyp j.
Thin 1
Delete hypothesis 1.
RenameVar v i
Rename the variable declared in hypothesis i to v.
RenameBVars (vsub : (var # var) list) c
Rename occurrences of bound variables in clause c.

9.2.2 Single-Step Decomposition

The decomposition tactics invoke the primitive so-called introduction and elimination rules of
Nuprl’s logic. We prefer the use of the word decomposition because it suggests in most cases
the effect of the rules when they are applied.
D c
Decompose the outermost connective of clause c. Usually D unfolds all top level abstractions and
applies the appropriate primitive decomposition rule. D can take several optional arguments:

e A ‘universe’ argument, usually applied using the At tactical.

o A ‘t1° argument for a term. This argument is for instance necessary when decomposing a
hypothesis with a universal quantifier outermost, or decomposing the conclusion with an
existential quantifier outermost. For example: With ‘a’ (D 0).

o ‘v1‘ and ‘v2‘ arguments for new variable names. These are useful for some hypothesis
decompositions if one is not satisfied with the system supplied variable names. For example,
New [‘x’;‘y’] (D 3).

e An ‘n‘ argument to select a subterm. This is necessary when applying D to a disjunct in
the conclusion. For example, Sel 1 (D 0).
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D is somewhat intelligent with instances of set and squash terms.

ID ¢
Intuitionistically decompose clause c. This behaves as D does, except that when decomposing
a function, a universal quantifier, or an implication, in a hypothesis, the original hypothesis is
left intact rather than thinned.

MemCD
Decomposes terms which are the immediate subterms of an membership term in the conclusion.
Labels subgoal corresponding to subterm n with label subterm and number n. Other subgoals
are labelled wf. For primitive terms MemCD uses the appropriate primitive rule. For abstractions,
MemCD tries to use an appropriate well-formedness lemma. The lemma for term a ¢t with opid
opid should have name opid_wf and should be a simple universal formula with consequent ¢ € T'.
The subterms of ¢ usually should be all variables. Constants are acceptable as subterms too. If
more than one lemma is needed, the lemmas should be distinguished by suffices to the opid_wf
root. MemCD attempts to use lemmas in the reverse of the order in which they occur in the
library. If the concl is ¢ € A where a is an instance of t and A doesn’t match any of the T of the
lemmas, then MemCD tries matching ¢ against ¢ of the last lemma. If this succeeds and generates
some substitution ®, MemCD produces a subgoal #7 C A and tries to use the Inclusion tactic
to prove it.

An example application of the MemCD tactic is
. F<a,b>ex:AX B,

BY MemCD
subterml: ... F ac A
subterm2: ... F b€ B,
wf: ....:A F B, €U,

EqCD
EqCD is like MemCD except that it works on the immediate subterms of equality terms rather
than membership terms and the subgoals generated are equality terms rather than membership
terms. Equalities don’t have to be reflexive. EQCD is good for congruence reasoning and is used
extensively by the rewrite package.

EqHD i
Decompose terms which are immediate subterms of equality hypotheses. Works when the type
is a product or function type.

MemHD i
Like EqHD but works on the immediate subterms of membership terms.

EqTypeCD
Decompose just the type subterm of a conclusion equality term. Only works when the type is
a set type or is an abstraction that eventually unfolds to a set type.

MemTypeCD
As EqTypeCD but works on membership terms.

EqTypeHD i
Decompose just the type subterm of a hypothesis equality term. Only works when the type is
a set type or is an abstraction that eventually unfolds to a set type.

MemTypeHD i
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As EqTypeHD but works on membership terms.

9.2.3 Iterated Decomposition

Several tactics do iterated decomposition of clauses. Here are a few that are commonly used, along
with the connectives that they work on.

Tactic In Hyps | In Concl
UnivCD V=
GenUnivCD V=N =
RepD A V=
GenRepD A V=N =
ExRepD an V=
GenExRepD | IAV V=N =

If a guard term is encountered in the process of decomposing the conclusion, the guard term is
removed and decomposition of the conclusion stops.

9.3 Tacticals

Tacticals are functions for composing tactics. Infix tacticals are distinguished by having the first
part of their name in all capitals. Infix tacticals always associate to the left.

9.3.1 Basic Tacticals

T1 ORELSE T2
Try running T1. If it fails, run T2 instead.
T1 THEN T2
Run T1, and then on all subgoals generated by T1, run T2.
T THENL [T1;...;Tn]
Run T1, generating exactly n subgoals. Then run Ti on the ith subgoal (numbering subgoals
from left to right.)
Try T
=45 T ORELSE Id
Complete T
Run T. Fail if T generates one or more subgoals.
Progress T
Run T. Fail if T makes no progress. (For example, if T is Id.)
Repeat T
Repeat application of T on subgoals generated by previous tries, until no further progress made
RepeatFor i T
Repeat application of T exactly n times.
If (e:proof -> bool) T1 T2
If e p evaluates to TRUE then run T1. Otherwise, run T2.
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9.3.2 Label Sensitive Tacticals

IfLab lab T1 T2
If 1ab matches label of p, run T1. Otherwise, run T2.
T1 THENM T2 =4y T1 THEN IfLab ‘main‘ T2 Id
T1 THENA T2 =4y T1 THEN IfLab ‘aux‘ T2 Id
T1 THENW T2 =4y T1 THEN IfLab ‘wf‘ T2 Id

IfLablL [11,T1; 12,T2; ... ;1n,Tn]
Run the first T¢ for which 17 matches label of p
T THENLL [11,Tsi1; 12,Ts2; ... ;1n,Tsnl

Run tactic T then do the following on each subgoal, scanning the subgoals from left to right.
Match the subgoal’s label against each 1i until a match succeeds. Then if the subgoal also
has number label j, retrieve the jth tactic from Tsi and run that tactic on the subgoal. If the
subgoal has no number label, then pop the first tactic off the Tsi list and run that tactic. If
there are not sufficient tactics in the appropriate lists, THENLL fails. If there are too many, then
the excess are ignored. If a subgoals label doesn’t match any of the 1i then run the Id tactic.
SeqOnM [T1;...;Tnl]
Run the tactics T1 to Tn on successive main subgoals.
RepeatM T
Repeat the tactic T on main subgoals.
RepeatMFor i T
Repeat the tactic T on main subgoals exactly i times.

9.3.3 Multiple Clause Tacticals

AllHyps (T : int -> tactic)
Try running T on each hypothesis starting with the end of the hypothesis list and working
backwards. If T succeeds on some hypothesis, then A11Hyps only continues on subgoals created
by T that are labelled main.

A1l (T : int -> tactic)
Similar to A11Hyps, except that also tries applying T to conclusion after trying to apply it to
hypotheses.

On [c1;...;cn] (T : int -> tactic) =4y T c1 THENM ... THENM T cn

9.4 Case Splits and Induction

There are two ways of doing case splits and induction. The more general way is to backchain
through an appropriate lemma. For example, look at the lemmas int_upper_ind and int_seg_ind
at the end of the int_2 theory. To use these lemmas, you must ensure that the type the induction
is being done over is in an outermost universal quantifier in the conclusion. For example, to use
int_seg_ind, the conclusion must be of form Vi:{j ...k~ }.P;. The following case-split and induction
tactics are good for a few common cases. With them, the variable the induction / case-split is being
done over should be declared in some hypothesis.

BoolCases i
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Do case split on whether variable declared to be of type B (the booleans) in hyp i is tt or ff.
Generates truecase and falsecase subgoals.

ListInd i
Do list induction on hypothesis i. Generates upcase and basecase subgoals. First moves any
depending hyps to concl.

IntInd i
Do integer induction on hypothesis i. Generates upcase, basecase and downcase subgoals.
First moves any depending hyps to concl. This is a little smarter than the primitive rule, in
that it maintains the name of the induction variable.

NatInd i
Do natural-number induction on hypothesis i. Hypothesis must be a nat abstraction. Generates
upcase and basecase subgoals. First moves any depending hyps to concl. This is a little smarter
than the primitive rule, in that it maintains the name of the induction variable.

NSubsetInd i
Do induction on subrange of the natural numbers. Hyp i should be a nat, nat_plus, int_upper
or int_seg abstraction. Generates two main subgoals - basecase and upcase- and approxi-
mately 15 aux subgoals which should always be easily solvable by Auto.

CompNatInd i
Do complete natural number induction on hyp i. Hyp i must be a nat abstraction.

Sometimes using a lemma results in unprovable well-formedness goals. This occurs in particular
when proving well-formedness lemmas. In these cases, you should try to use one of the tactics above.

The theory well_fnd has some definitions for well-founded induction. In particular it defines
the tactic Ranknd. This is useful when you know how to do induction over some type A and you
want to do induction over a type B using some rank function which maps elements of B to elements
of A. The tactic is described in the objects inv_image_ind _tac and rank_ind.

The theory bool_1 defines various tactics for case splitting on the value of boolean expressions
in the conclusion. Tactics include BoolCasesOnCExp and SplitOnConclITE. View the theory for
details.

9.5 Forward and Backward Chaining

Forward and backward chaining involves treating a component of a universal formula (see Sec-
tion 9.1.3) as a derived rule of inference. Backward chaining involves matching the conclusion of a
sequent against the consequent of a universal formula. The antecedents of the universal formula,
instantiated using the substitution resulting from the match, then become new subgoals. Forward
chaining involves matching hypotheses of a sequent against antecedents of a universal formula. The
consequent of the universal formula, instantiated using the substitution resulting from the match,
then becomes a new hypothesis.

BackThrulLemma name

BackThruHyp i
The name (i) argument selects the lemma (hypothesis) to back-chain through. Subgoals corre-
sponding to antecents of the lemma (hyp) are labelled with antecedent. The rest are labelled
wf. Aliases are BLemma and BHyp.
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FwdThruLemma name is

FwdThruHyp i is
The name (1) argument selects the lemma (hypothesis) to forward chain through. is selects the
hypotheses which are to be matched against antecedents of the chaining formula. The order
of the is is immaterial; the tactics try all possible pairings of hypotheses with antecedents. If
there are more antecedents that hyps listed in the is, the antecedents not matched will manifest
themselves as new subgoals to be proved. The main subgoal with the consequent of the lemma
(hyp) asserted is labelled main. Unmatched antecedents are labelled antecedent and the rest
are labelled wf. Aliases are FLemma and FHyp.

Chaining tactics take a number of optional arguments.

e An explicit list of variable bindings as a sub argument. This argument is necessary when all
variable bindings cannot be inferred from matching. The sub argument is supplied using the
Using tactical. For example:

Using [‘n‘.’3’] (BackThrulLemma ‘int_upper_induction®)

would bind the variable n in the lemma int _upper_induction to the value 3.

o A specific simple component of a general formula can be selected using an ‘n¢ argument,
supplied by using the Sel tactical. For example

Sel 2 (FwdThruLemma ‘add mono wrt_eq‘)

An ‘n‘ argument of -1 forces the tactic to treat the formula as a simple formula.

Backchain bc_names

CompleteBackchain bc_names
Repeatedly try BackThruLemma using lemmas named in bc_names in order given. Backchain
leaves alone any subgoals which don’t match the consequent of any of the lemmas. CompleteBackchain
backtracks in the event of any such subgoal coming up.

In addition to lemma names, a few special names are recognized:

e An integer 7. Use hypothesis ¢. (i must be a positive integer. Negative integers can’t be
used to refer to hypotheses here.)

e hyps: hyps 1---n where n is the number of hyps. Skips hyps which declare variables.
e rev hyps: As hyps but in order n---1.
e new hyps: new hyps introduced by backchaining, least recent first.

e revnew hyps: As new hyps but in opposite order.

‘‘revnew hyps rev hyps‘‘

‘‘revnew hyps rev_hyps‘

HypBackchain —4.y Backchain
CompleteHypBackchain —,4.; CompleteBackchain

InstLemma name [t1;...;tn]
Instantiate lemma name with terms t1 through tn. If the lemma has m distinct level expressions,
the first m terms should be level expressions to substitute for the lemma’s level expressions.
(Inject level expression le into the term type using the special term parameter{/e:1}. In the
term editor you select this term by the name parameter.)
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InstHyp [tl;...;tn] i

Instantiate universal formula in hyp i with terms t1 through tn.
InstConcl [t1l;...;tn] i

Instantiate existential quantifiers in conclusion with terms t1 through tn.

9.6 Decision Procedures

9.6.1 ProveProp

The ProveProp family of tactics are useful for partially or completely proving goals that involve
simple propositional reasoning. The strategy is basically to that for classical tableau: Propositions
in hypotheses and the conclusion are exhaustively decomposed and applications of the Hypothesis
tactic are sought. A slight tweak is the tactic has to do ‘or’ branching and backtracking when
it tackles an V conclusion or an = or — hypothesis, because the Nuprl sequents only allow one
conclusion rather than many as is commonly the case in classical sequent calculi.
ProveProp
The basic tactic. Fails if doesn’t succeed in solving all main goals.
ProvePropl
Like ProveProp, but leaves main subgoals at ‘or’ branching points of the search for a solution
when the search down every branch fails.
ProvePropWith (T : tactic)
Like ProveProp1, but tries running tactic T before completely abandoning a search path. If T
creates any main subgoals, search continues on these subgoals.
ProveProp is not complete for intuitionistic propositional logic, because it always thins = and
- hypotheses that are decomposed.

9.6.2 Eq

Eq does trivial equality reasoning. It proves goals of form H + ¢ = ¢’ € T using hypotheses
that are equalities over T and the laws of reflexivity, commutativity and transitivity. It also uses
hypotheses that are equalities over 7/ when T = T’ is deducible from other hypotheses using
reflexivity, commutativity and transitivity. The Eq rule is implemented as a procedure coded in
Lisp.

9.6.3 RelRST

RelRST is a tactic that tries to solve goals by exploiting common properties of binary relations,
including reflexivity, symmetry, transitivity, irreflexivity, antisymmetry, and linearity.

The heart of this tactic is a routine that builds a directed graph based on the binary relations
in a sequent and finds shortest paths in the graph. Extensions to this routine to allow it to handle
strict order relations and relations with differing strengths.

RelRST uses the the same database on relations and some of the same lemmas as the rewrite
package. In addition, it relies on lemmas in the library of the following forms.

o Irreflexivity lemmas. These should have form

VeuTh .. xp Ty Yy:5. A1 = ... = A, = y R y = FalseAllzs:As, Ally:TBs => y < y => False
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and be named opid-of-<_irreflexivity.
o Antisymmetry lemmas. These should have form
Vol 2T Vy,y':S. A= ... A, y<y =y <y=y=1vy
and be named opid-of-<_antisymmetry.
o Complementing lemmas. These should have form
Va1l 2T Yy, y':5. A1 = .2 A, = —(y<y) =y <y
and be named opid-of-<_complement, or
VarTy .o 2T Yy, y':5. A1 = ... = A, = =(y<y) =y <y
and be named opid-of-<_complement.
Allzs:As, Ally,y"TBs => not(yLTRy') => y' LE Ry

RelRST generalizes the Eq tactic in previous versions of Nuprl that only handled such reasoning
with the equality relation of Nuprl’s type theory.
Here are a couple of examples of RelRST’s use from a theory of divisibility over the integers:
.ar Z
.a't Z
. b Z
. b’ Z

1

2

3

4

5. ...
6. a’ | a
7. b | b’
8. ...
9. a | b
Fa | b

I
BY (RelRST ...)

&
=
o

<« o p
A ¢
NNN

gcd(a;b)
y2: Z

yi

gcd(b;a) = y2

© 0 ~N O 0 W N =

10. y1 ~ y2

F gcd(a;b) ~ gcd(b;a)
|

BY (RelRST ...)
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Here, I have elided hypotheses that were not required by RelRST to solve the goals. The ~ relation
is the associated relation and gcd(a;b) is a function that computes the greatest common divisor
of a and b. The second example illustrates how RelRST is able to cope with relations of differing
strengths.

Unlike Eq, RelRST doesn’t involve any extensions being made to the primitive rule refiner.

9.6.4 Arith

The Arith tactic is used to justify conclusions which follow from hypotheses by a restricted form
of arithmetic reasoning. Roughly speaking, Arith knows about the ring axioms for integer multi-
plication and addition, the total order axioms of <, the reflexivity, symmetry and transitivity of
equality, and a limited form of substitutivity of equality. We will describe the class of problems
decidable by Arith by giving an informal account of the procedure which Arith uses to decide
whether or not C' follows from H.

Arith understands standard arithmetic relations over the integers; namely terms of the form
s<t,s<t,s>t,s>t,s=te€Zands#teZ. It also recognizes negations of these terms. As
the only equalities Arith concerns itself with are those of the form s = ¢ € Z, we will drop the € Z
and write only s = ¢ in the rest of this description. The arith rule may be used to justify goals of
the form

HF Civ...vCOy

where each C; is a term denoting an arithmetic relation. If Arith can justify the goal it will
produce subgoals requiring the user to show that the left- and right-hand sides of each C; denote
integer terms. As a convenience Arith will attempt to prove goals in which not all of the C; are
arithmetic relations; it simply ignores such disjuncts. If it is successful on such a goal, it will
produce subgoals requiring the user to prove that each such disjunct is a well-formed proposition.

Arith analyzes the hypotheses of the goal to find relevant assumptions. In particular, it will
maximally decompose each hypothesis into a term of the form A; A...A A, (n > 1), and will use
as an assumption any of the A; which are arithmetic relations of the form describe above. It also
extracts assumptions from declarations of variables in types that are subsets of Z. For example
from the declaration i:N it extracts the assumption that 7 > 0.

Arith begins by normalizing the relevant formulas of the goal according to the following con-
ventions:

1. Rewrite each relation of the form s # ¢ as the equivalent s < t V¢ < s. A conclusion
follows from such an assumption if it follows from either s < t or t < s; hence arith tries
both cases. Henceforth, we assume that all negations of equalities have been eliminated from
consideration.

2. Replace all occurrences of terms which are not addition, subtraction or multiplication by a
new variable. Multiple occurrences of the same term are replaced by the same variable. Arith
uses only facts about addition, subtraction and multiplication, so it treats all other terms as
atomic. At this point all terms are built from integer constants and integer variables using

+, — and *.
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3. Rewrite all terms as polynomials in canonical form. The exact nature of the canonical form
is irrelevant (the reader may think of it as the form used in high school algebra texts) but
has the important property that any two equal terms are identical. Each term now has the
form p+ cfp’ + ¢’, where p and p’ are nonconstant polynomials in canonical form, ¢ and ¢’ are
constants, and 6 is one of <, = or > (s > t is equivalent to -t < s).

4. Replace each nonconstant polynomial p by a new variable, with each occurrence of p being
replaced by the same variable. This amounts to treating each nonconstant polynomial as
an atom. Now each formula is of the form z + ¢fz' + ¢/. Arith now decides whether or
not the conclusion follows from the hypotheses by using the total order axioms of <, the
reflexivity, symmetry, transitivity and substitutivity of =, and the following so-called trivial
monotonicity axioms (¢ and d are constants).

s z>yc>d=>z+c>y+d
s>y c<d=>z—c>y—d

These rules capture all of the acceptable forms of reasoning which may be applied to formulas
in canonical form.

9.6.5 Suplnf
9.6.5.1 Description

The algorithm used in the Arith tactic cannot solve general sets of linear inequalities over the
integers, though such problems are abundant (for example when doing array bounds checking).
Solving linear inequalities over the integers is a strictly harder problem than over the rationals:
polynomial time algorithms are known for the solving linear inequalities over the rationals, but
integer linear programming is NP complete.

The SupInf tactic is uses the Sup-Inf method of Bledsoe [?] for solving integer inequalities.
While method is only complete for the rationals, not the integers, it does work well in practice for
the integers.

The basic algorithm considers a conjunction of inequalities 0 < e; A ... A0 < e, where the ¢;
are linear expressions over the rationals in variables z1 ...z, and determines whether or not there
exists an assignment of values to the z; that satisfies the conjunction. The algorithm works by
determining upper and lower bounds for each of the variables in turn — hence the name ‘sup-inf’.
The bound calculations are always conservative, so that if some upper bound is strictly below some
lower bound, then the conjunction is unsatisfiable.

Shostak [?] showed that the calculated bounds are the best possible, and hence that the
algorithm is complete for the rationals. He proposed a simple modification that made the algorithm
return an explicit satisfying assignment when the conjunction is satisfiable.

When used over the integers, the Sup-Inf algorithm is sound, but not complete; if there is no
satisfying assignment over the rationals, then there is also none over the integers. However, there
are cases when the algorithm finds a rational-valued satisfying assignment even though none exists
that is integer valued. There are standard techniques for restoring completeness, but it has been
both Shostak’s and our experiences to date that examples for which the algorithm is incomplete
are rare in practice.

The procedure implemented currently does the following;:
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1. Takes a goal g and extracts a logical expression P built from the logical connectives A, V, —,
the order relations on the integers < and <, and the equality relation = on the integers, such
that if = P is not satisfiable, then the goal g is true. If the goal has the form

TlyeoTpile, T1,...TL F 1

where the r; are all instances of the <, <, = relations over the integers involving expressions
over the integer variables z1,...,x,, then =P has form

rA..oATEAN T

2. The expression =P is put into disjunctive normal form. Occurrences of = and < relations
are eliminated in favour of <. Where possible, =’s are eliminated by substitution rather than
splitting into inequalities.

3. The left-hand argument of each < is moved to right-hand side and the integer expressions are
put into a sum of products normal form. Each product has any constant coefficient brought
out to the left of the product.

4. Fach distinct non-linear expression is generalized to a new rational variable. These non-linear
expressions might involve * and +, as well as integer-valued functions (for example, the list
length function). The arithmetic expressions are now all linear.

5. Fach disjunct is augmented with extra arithmetic information suitably normalized that comes
from various sources including:

(a) typing of variables and generalized non-linear expressions. If variable ¢ has type {j...},
then j <7 can be added.

(b) arithmetic property lemmas. An example is a lemma stating that the length of two lists
appended is the sum of the lengths of each list.

This augmentation is in general a recursive procedure; the inferred arithmetic propositions
can themselves contain variables and non-linear expressions about which further information
can be inferred.

6. The Sup-Inf algorithm is run on each disjunct. If none is satisfiable, then the original goal is
true. If a satisfying assignment is found, then it is returned to the user as a counter-example.

7. When no disjunct is satisfiable, the procedure creates several well-formedness subgoals. Some
of these check the well-formedness of the arithmetic expressions in the conclusion of the
original goal g. Others check that the arithmetic property lemmas can be instantiated as the
procedure assumed they could be.

The inference of arithmetic properties from typing and from property lemmas greatly increases
the procedure’s usefulness.

Unlike most other tactics, but like the arith rule which SupInf largely supercedes, SupInf’s
inferences are not refined down to primitive rule level, so Nuprl’s soundness now depends on the
soundness of a core part of SupInf’s implementation.
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9.6.5.2 Detalils

First a few definitions.

o An arithmetic type is either the type Z (int) or one of the standard subtypes of Z defined in
the int_1 theory. Specifically: N (nat), N* (nat_plus), Z ° (int_nzero), {i...} (int_upper),
{i...j7} (int_seg), or {i...j} (int_iseg).

o An arithmetic literal is one of

the relations a = b €T and @ #b €T where T is an arithmetic type,

— the relation @ = b €T where T is an arithmetic type,

Any of the inequalities <, >, <, or >,

Either of the above inside one or more negations (=).

SupInf recognizes the arithmetic literals that occur in a sequent either at the top level of a
clause or buried under mwedge and mvee connectives.

There are two variants on the SupInf tactic: SupInf and SupInf’. Only SupInf’ tries inferring
additional arithmetic information about the non-linear terms in arithmetic expressions.

The information on a non-linear term is gathered in two ways:

1. The standard type-inference function get_type is run on the term, and if it returns one of the
standard arithmetic subtypes of Z, then the predicate information from the subtype is used.

2. Arithmetic property lemmas are examined.
An arithmetic property lemma should have form
Ve 1. .21, Ay =>...=> A, = C

where ' is constructed from A’s, V’s and arithmetic literals. match handles are selected from C'.
A match handle is a non-linear arithmetic term that occurs as an argument to an arithmetic literal
in C such that all the free variables contained in ' and the A; are also contained in the non-linear
term. An arithmetic lemma is considered as providing information about each of its match handles.

Currently, an arithmetic property lemma is only used if after matching the match handle in
C with the non-linear term that information is desired on, all the instantiated A; are equal to
hypotheses of the sequent. This is perhaps an overly strict condition.

Arithmetic property lemmas are identified by invoking the ML function

add_arith_lemma
lemma-name : tok

() :unit

SupInf’ is currently under development and should be used with caution. Hopefully all changes
to it will only be enhancements, so if it is successful now, it will be successful in the future. One
problem with it is that the process of type-checking subgoals created by instantiating arithmetic
property lemmas can cause the creation of subgoals that require arithmetic reasoning to solve.
When SupInf’ is used as part of a type-checking tactic (as it is in Auto’), there are sometimes
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cases when SupInf’ unendingly gets invoked on subgoals derived from ones that it itself created.
Further work is needed on SupInf’ to avoid this happening.

SupInf identifies counter-examples if it fails. These can be viewed by looking at value of the
ML variable supinf _info. The value gives a list of bindings of variables in the goal for the counter-
example. There are two kinds of counter-examples; integer and rational. If SupInf finds an integer
counterexample, then you know that the goal is definitely unprovable. If a rational counter-example,
then SupInf is unsure whether the goal is true or not. These latter cases should be rare in practice.

A couple of examples of uses of the SupInf tactic are as follows. It is able to prove the goal

1. x: Z

2. y: Z

3. z: Z

4. 2 y+3< 5%z
5.z<x-y
6.3%x <5
F2xy <3
but on

1. x: Z

2. y: Z
3.3xx >y
4.y > 2
Fx+y>3

finds the counterexample x= 1 and y= 2. Examples of arithmetic property lemmas are:
FVYi:Z.V j:Z.120=3j>0=0<iremj < j

where rem is the remainder function and:

F VA:U. Vas:A list. Vn:Nlas|. (Inth_tl(n;as)| = |as| - n)
where nth_t1(n;as) takes the nth tail of list as, || is the list length function and N|as|. is an
abbreviation for the integer segment {0...las|-1}. The latter lemma is invoked when SupInf

proves the goal:

1. T: U

2. as: T List

3. m: N

4. n: N

5. las| < m +n

F Inth_tl(n;as)| < m

9.7 Rewriting

9.7.1 Introduction

Rewriting is basically the process of using equations as transformational rules.
In Nuprl, rewrite rules are derived from

e abstractions,
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e primitive reduction rules, and

e formulas of form
Va1 ...x;:T5.a=b

that occur as lemmas or hypotheses.

Nuprl’s rewrite package is a collection of ML functions for creating rewrite rules and applying
them in various fashions to clauses of a sequent.

The package supports rewrite rules involving various equivalence relations. Examplesinclude the
3-place equality-in-a-type relation, the iff relation, and the permutation relation on lists. Nuprl’s
logic doesn’t guarantee that all equivalence relations are respected. In cases when there is no
guarantee, the package takes care of automating proofs that the relations are respected.

The notion of rewriting is extended to including rules involving any transitive relation. Here,
the package takes care of checking that relevant terms are appropriately monotonic.

The package is based around ML objects of type convn called conversions, similar to those
found in other tactic based theorem provers such as LCF, HOL and Isabelle. Conversions provide
a language for systematically building up rewrite rules in a fashion similar to the way tactics are
assembled using tacticals.

For convenience, a few concise rewriting tactics are provided that completely hide the conversion
language (see Section 9.7.2). These are sufficient in many situations, though most Nuprl users will
need eventually to familiarize themselves with many of the details of the package.

Note that Section 9.7.11 describes some older substitution tactics that can be used for certain
very simple kinds of rewriting.

9.7.2 Concise Rewriting Tactics

Unfolds as c
Unfold all visible occurrences of abstractions listed in the token list as in clause ¢
Unfold a ¢ =4.y Unfolds [a] c
RepUnfolds as c
Repeatedly try unfolding any occurrences of abstractions listed in the token list as in clause ¢
Folds as ¢
Fold all visible occurrences of abstractions listed in the token list as in clause ¢
Fold a c=g4.s Folds [a] c

Reduce c
Repeatedly contract all both primitive and abstract redices in clause c.
The Reduce tactic can take an optional force argument. The tactic

With force (Reduce ¢)

only reduces those redices with strength less than or equal to force. For more on defining abstract
redices and setting the strength of redices, see Section 7?7 and Section 9.7.5.6.

A couple of rewrite tactics provide access to all kinds of rewrite rules. These tactics take a
control string to specify the rewrite rules to use. Control string should be a whitespace-seperated
list of tokens as specified in Table 9.1. The tactics are:

RWW (ctl-str : string) i
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Token Rule

i Use hyp i as an I-to-r rule
i< Use hyp i as an r-to-1 rule
name Use lemma name as an l-to-r rule

name< | Use lemma name as an r-to-l rule
r:id Reduce redex with opid id

T* Reduce any redex

r*force | Reduce any redex with force force
u:id Unfold abstraction with opid id
f:id Fold abstraction with opid id

Table 9.1: Format of Tokens in Rewrite Control Strings

Repeatedly apply rewrite rules specified by ctl-str to all nodes of clause i until no further progress
is made.

RWO (ctl-str : string) i
Apply rewrite rules specified by ctl-str in one top-down pass over clause i. If one of the rewrite
rules succeeds on some subterm, then don’t try rewriting the subterms of the rewritten subterm.

9.7.3 Introduction to Conversions

This section presents a simplified implementation of conversions and conversionals to convey the
general ideas. Later sections describe the actual conversions that are implemented. Note however
that the conversionals introduced here have the same names and same behaviours as those in the
actual system.

Let convn be an ML concrete type alias for the type of conversions. In this section, assume that
convn is an alias for the type term -> term, where term is a type of terms that we want to rewrite.
Later on, I describe the type that convn is actually an alias for. If ¢ is of type convn, then we can
use ¢ to rewrite ¢ of type term by simply running the ML evaluator on the application ¢ t.

For the purposes of the section only, let me introduce a basic conversion called RuleC : term ->
convn. The conversion RuleC expects its term argument to be of form a¢ = b where the free variables
of b are a subset of those in a. If the conversion RuleC ’a = b’ is applied to a term t, RuleC tries to
find a substitution # such that #a = t. If it succeeds, it returns the term #b. If a substitution cannot
be found, RuleC raises an exception. The conversion RuleC ’a = b’ therefore rewrites instances of
a to corresponding instances of b. For example:

RuleC ’z+0 =2’

when applied to the term (2 x 3) 4 0 yields the term 2 x 3.
RuleC cannot by itself rewrite subterms of a term; if

RuleC ’z+0 =2’

is applied to the term (14 0) x 3, it fails. There are a variety of higher-order conversions that map
a conversion such as RuleC over all subterms of a term. An example of a conversional is SweepUpC :
convn -> convn. If ¢ is a conversion, then SweepUpC c is also a conversion. if SweepUpC ¢ is applied
to some term ¢, an attempt is made to apply ¢ once to each subterm of ¢ working from the leaves
of term ¢ up to its root. SweepUpC c only fails every every application of ¢ fails. So if
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SweepUpC (RuleC ’z+0=2z")

is applied to term (1 4 0) x 3, it succeeds and returns the term 1 x 3.

The basic conversion for sequencing conversions is ANDTHENC : convn —> convn —> convn. In
Nuprl, we reserve all-capital names for infix functions so a normal application of ANDTHENC to
conversions ¢; and co has form c¢; ANDTHENC c;. When applied to a term ¢, ¢; ANDTHENC cs first
applies ¢; to t. If ¢; succeeds, returning a term t’, then ¢y is applied to ¢’ and the result is returned.
If either ¢; or ¢g fails, then ¢; ANDTHENC c, also fails. By analogy with tacticals being higher-order
tactics, ANDTHENC is called a conversional.

The ORELSEC : convn -> convn -> convn conversional is for combining alternative conversions.
When ¢; ORELSEC ¢ is applied to a term ¢, it first tries applying ¢; to t, and if this succeeds returns
the result. If the application of ¢; fails, then it tries applying ¢o to ¢, failing if ¢; fails.

The definition for SweepUpC is:

letrec SweepUpC ¢ t = (SubC (SweepUpC c) ORTHENC c) t

SubC : convn -> convn when applied to a conversion ¢ and a term ¢, applies ¢ to each of the
immediate subterms of ¢. It fails only when ¢ fails on every immediate subterm. Hence, it always
fails when t is a leaf node and has no immediate subterms. ¢; ORTHENC c¢5 is similar to ¢; ANDTHENC
o in that it first tries ¢; and then ¢3. However ORTHENC only fails if both ¢; and ¢g fail. So, a call of
SweepUpC c on argument ¢ first tries to apply SweepUpC ¢ to the immediate subterms of ¢ and then
then tries to apply ¢ to ¢ itself. Note that without the t argument on the left and right sides of the
definition, SweepUpC in ML’s call-by-value evaluation scheme would recurse indefinitely.
The definition for ORTHENC is:

let c¢1 ORTHENC c2 = (c1 ANDTHENC TryC c2) ORELSEC c2

where TryC c is defined as ¢ ORELSE IdC and IdC: convn, when applied to any ¢, always returns t.
Other conversionals that are commonly used in the work described in this thesis are:

e FirstC : convn list -> convn which is an n-ary version of ORELSEC,

e RepeatC : convn —> convn which repeatedly tries applying a conversion till no further progress
is made,

e HigherC : convn —> convn which applies a conversion to only nodes higher in a term tree.
What I mean by ‘higher’ is probably best understood by studying the definition of HigherC:

letrec HigherC ¢ t = (c ORELSEC SubC (HigherC c)) t

e SweepDnC : convn -> convn which sweeps a conversion down over a term tree from the root
towards the leaves. Its definition is:

letrec SweepDnC ¢ t = (¢ ORTHENC SubC (SweepDnC c)) t

e NthC int -> convn -> convn. NthC ¢ ¢ t tries ¢ on each node in ¢ in pre-order order, but only
on the ith success of ¢ does it go through with the rewrite that ¢ suggests. This is very useful
during interactive proof when for example you want to unfold one instance of a definition but
not any others.
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9.7.4 Nuprl Conversions

In Nuprl, convn is an ML concrete type abbreviation for the type
env -> term -> (term # reln # just).

env, reln and just are abstract types for environments, relations and justifications. A conversion
is a function that takes as arguments an environment e and a term to be rewritten ¢, and returns
a triple (t',r, 7). The environment e specifies amongst other things the types of all the variables
which might be free in the term ¢. The term ¢’ is the rewritten version of the term ¢. The relation
r specifies the relationship between ¢ and #'. Writing r using infix notation, we can say that ¢ r ¢’ is
true. The relation r is usually some equivalence relation but it also can be an order relation. The
justification j is an object that tell Nuprl how to prove that ¢ r . Conversions fail if they are not
appropriate for the term they are applied to. More information on environments, rewrite relations,
and justifications can be found in Section 9.7.8,Section 9.7.9 and Section 9.7.10 respectively.

A tacticRewrite : convn -> int -> tacticis used for applying a conversion to some clause
of a sequent. It takes care of executing the justifications generated by conversions. Section 9.7.6
lists common variations on this tactic.

Atomic conversions are either based on direct computation rules or can be created from lemmas
and hypotheses. Conversions are composed using higher order functions called conversionalsin a
way similar to the way in which tactics are composed using tacticals. One set of conversionals are
for controlling the sequence in which atomic conversions are applied to the subterms of a term.

Conversionals rely for their correct functioning on a variety of different kinds of lemmas being
proven about the relations r and the terms making up any clause being rewritten; lemmas are re-
quired that state reflexivity, transitivity and symmetry properties of the relations r and congruence
properties of the terms making up the clauses. These lemmas are described in Section 9.7.7.

9.7.5 Conversion Descriptions

The descriptions assume the conversion has been applied to an environment e:env and a term
t:term. Types of arguments to conversions are:

c* : convn type of conversions

cs* : convn list

e* D env environment

ij : int hypothesis or clause indices

addr : int list subterm address

a : tok name of abstraction

name : tok name of lemma or cached conversion
names : tok list list of names

ttlt2 : term

9.7.5.1 Trivial Conversions

FailC always fail
IdcC identity conversion
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9.7.5.2 Lemma and Hypothesis Conversions

The conversions here derive rewrite rules from lemmas and hypotheses. Formulae that are lemma
goals or hypotheses are treated as having the structure of either simple or general universal formulae
(see Section 9.1.3 for definitions of these) . The consequents of these formulae must each be of form
a v b where r usually (but not always) an equivalence relation. Any relation r that is going to be
recognized by the rewrite package must be initially declared to it. See Section 9.7.9 for details.
The conversions described here all rewrite in a left-to-right direction: they replace instances of
a’s by instances of b’s. Each has a twin conversion that works right-to-left. These twins have the
prefix Rev to their names. For example, RevLemmaC is the twin to LemmaC.
LemmaC name
Considering name as a simple universal formula with consequent a r b, LemmaC creates a con-
version to rewrite instances of a to instances of b.
HypC 1
Considering hyp i as a simple universal formula with consequent a r b, HypC creates a conversion
to rewrite instances of a to instances of b.
LemmaC is an instance of

GenLemmaWithThenl.C
(n:int)
(hints: (var # term) list)
(Tacs:tactic list)
(name: tok)

and HypC is an instance of

GenHypWithThenLC
(n:int)
(hints: (var # term) list)
(Tacs:tactic list)
(i: int)

The arguments to these conversions are as follows:

n indicates that the nth consequent of a general universal formula. If -1 is used for n then the
formula is always treated as simple. In particular, a < relation is treated as the relation in
the consequent rather than part of the structure of a general universal formula.

hints is for supplying bindings for variables in the lemma that Nuprl’s matching routines can’t
guess on their own.

Tacs is used for conditional rewriting. Conditional rewriting is when the antecedents of a formula
are checked for validity before the rewrite rule is used.

Tactics in Tacs are paired up with subgoals formed from instantiated antecedents and each
tactic is run on its corresponding subgoal. The rewrite goes through only if every tactic
completely proves its subgoal.

If there are fewer Ts than antecedents, Ts is padded on the left up to the length of the
antecedents with copies of the head of Ts. If Ts is empty, then the rewrite goes through
unconditionally.
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name is the name of the lemma.

i is the number of a hypothesis. As with tactics, hypotheses are considered to be numbered
positively from the beginning of the list onwards, and numbered negatively from the end
backwards. Occasionally, negative numbers can have unexpected results. See below for an
explanation.

Other useful specializations of GenLemmaWithThenLC and GenHypWithThenLC are:

GenLemmaC n name = GenLemmaWithThenL.C n [] [] name
LemmaWithC hints name = GenLemmaWithThenl.C (-1) hints [] name
LemmaThenl.C Tacs name = GenLemmaWithThenl.C (-1) [] Tacs name
GenHypC n i = GenHypWithThenLC n [] [] i

HypWithC hints name = GenHypWithThenLC (-1) hints [] i
HypThenlLC Tacs name = GenHypWithThenLC (-1) [] Tacs i

The hypothesis conversions described here derive their rewrite rules from local hypotheses in
the environments that they are presented with on their first applications (see Section 9.7.8) for a
description of what local hypotheses are). If the conversions are applied with conversionals such as
HigherC or NthC that start applying their argument conversion at the top of a term, then the local
hypothesis list is always the same as the hypothesis list of the sequent containing the clause being
rewritten.

Older versions of the hypothesis conversions required that the environment from which the
rewrite rule was to be captured be provided as a seperate argument to the conversion. This turned
out in most instances to be rather clumsy.

9.7.5.3 Atomic Direct-Computation Conversions

These low level conversions are not usually invoked directly by the user. However, there are cases
when they turn out to be useful.

TagC tagger Do forward computations indicated by tags in (tagger t).
Fail if tagger fails. tagger should be simple. e.g. tag_redex
RedexC If t is a primitive redex, contract it.

ExtractC names If t is the extract term of a theorem listed in names
then expand it.

AnyExtractC If t is any extract term, then expand it.

UnfoldTopAbC If t is an abstraction, unfold it.

UnfoldsTopC as  If t is an abstraction with opid listed in as, unfold it.

UnfoldTopC a = UnfoldsTopC [a]

FoldsTopC as Try to fold an instance of an abstraction whose definition
is given in a library object named in as.

FoldTopC a = UnfoldsC [a]

RecUnfoldTopC a If ais a recursively defined term, then
unfold the recursive definition.
RecFoldTopC a Try to fold an instance of the recursively defined term a.

RecUnfoldTopC and RecFoldTopC work only with recursive definitions that have been intro-
duced with the recdef function. See Section 10.2.4 for more details.
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9.7.5.4 Attributed Abstractions

Abstractions can be grouped by adding attributes (sometimes called conditions) to abstraction
objects. An atomic conversion for unfolding abstractions that is sensitive to attributes is:
AUnfoldsTopC (attrs : tok list)

If applied to a term t that has any of the attributes attrs, then unfold it.

9.7.5.5 Abstract Redices

It is frequently useful to augment the primitive redices that the system recognizes with abstract
redices, primitive redices that are buried under abstractions. For example, the first and second
projection functions for pairs are abstractions:

*A pil t.1 == let <x,y> =t in x
*A pi2 t.2 == let <x,y> =t in y

The term <"a","b">.1is an abstract redex. It contracts to the term "a".
The basic conversion for contracting both primitive and abstract redices is AbRedexC. Abstract
redices are added to a table that AbRedexC accesses using the function

add_AbReduce_conv
( id:tok)
( c:conv) ,

where id is the opid of the outermost term of the redex, and c is a direct-computation conversion
for contracting instances of the redex. Note that if the outermost term is an apply term, then the
id is taken from the term at the head of the possibly-iterated application.

Instances of add_AbReduce_conv are usually included in ML objects positioned immediately
after the definitions of non-canonical abstractions. For example, the declaration of the redex for
the pil term could be

*M pil_eval
let pil_evalC =
SimpleMacroC ‘pil_evalC®
f<a, b>.11 Tal <¢pig«¢

add_AbReduce_conv ‘pil‘ pil_evalC ;;

An alternative method for indicating an abstract redex is to associate a ‘reducible’ attribute with
an abstract non-canonical term. The AbRedexC conversion on being applied to a term first unfolds
all reducible abstractions at the top level of the term tree before further analyzing the term to see
if it is a redex. When this method is applicable, it is more concise than using add Reduce_conv. A
reducible attribute is associated with a term using the function

add_reducible_ab : tok —-> unit

It takes as its token argument the opid of the term.
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9.7.5.6 Reduction Strengths and Forces

Cases come up when it is desirable to have some redices contracted but not others. To this end, an
option is provided for specifying the strength of a redex, and a variant of the Reduce tactic allows
for a force to be specified for reducing with. Strengths are forces are drawn from a partial order. A
redex is only contracted when the reduction force applied to it is equal or greater than its strength.

A strength is associated with a redex in two ways:
e The strength is directly associated with the reduction rule for the redex.

e The strength is associated with the canonical term that is the principal argument of the

non-canonical term of the redex.

Strengths and forces are ML tokens. The current supported strengths, in increasing order of

strength, are

(o
(e
(3
g

(6(

(7(

(1(

(9(

beta redices

other primitive redices
abstract redices recursive
abstract redices non-recursive

module projection funs with coercion arguments. For example, the redex grp_op(add_grp_of_rng(r))
which contracts to rng_plus(r) has this strength.

functions creating module elements from concrete parts.

quasi-canonical redices. An example is the set_car term from the sets_1 theory when it has
list and product discrete-set constructors as its principal argument. These constructors can
also be found in the sets_1 theory.

irreducible terms.

Contraction conversions that should be sensitive to the force of reduction can be added to the

abstract redex table using the function

add_ForceReduce_conv
( id:tok)
( c:tok -> conv) .

The token argument that the conversion ¢ takes is for the force with which reduction is being

attempted.

Strengths can be associated with canonical terms using the function

note_reduction_strength
optd : tok
strength : tok .

The basic conversion for reducing with force F is ForceRedexC (F:tok). The conversion

AbRedexC always reduces with maximum force.
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9.7.5.7 Composite Direct Computation Conversions

PrimReduceC = RepeatC (SweepUpC RedexC)
UnfoldsC as = SweepUpC (UnfoldTopsC as)
UnfoldC a = UnfoldsC [a]

FoldsC as = SweepUpC (FoldTopsC as)
FoldC a = FoldsC [a]

SemiNormC as = SweepDnC (RepeatC (UnfoldsC as)) ANDTHENC PrimReduceC
RecUnfoldC a = SweepUpC (RecUnfoldTopC a)

RecFoldC a = SweepUpC (RecFoldTopC a)

ReduceC Repeat (SweepDnC AbRedexC)

9.7.5.8 Macro Conversions

MacroC name cl1 t1 c2 t2

MacroC will rewrite an instance of t1 to the corresponding instance of t2 using forward and reverse
computation steps. For example, a macro conversion might unfolds an abstraction, unroll a recur-
sive or inductive primitive term, and then fold up an abstraction. Specific examples can be found
in the standard libraries - Look at the definitions of non-canonical abstractions. Specifically, look
at ycomb_unroll or pil_eval.

cl and ¢c2 must be direct computation conversions which rewrite the pattern terms t1 and t2
respectively to the same term. MacroC uses second-order matching when matching instance terms
against t1. Also, any parameter variables in t1 will also be used in the match. name is used in the
conversion’s failure token.

For examples of the use of MacroC look at the length unroll object in the 1ist_1 theory.

SimpleMacroC name tl t2 as = MacroC name (SemiNorm as) t1 (SemilNorm as) t2
FwdMacroC name c t = MacroC c t IdC (apply.conv c t)
apply_conv returns the term resulting from applying
c tot
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9.7.5.9 Conversionals

cl ORELSEC c2 apply c1. If c1 fails, apply c2
TryC c = ¢ ORELSEC IdC

cl ANDTHENC c2  apply cl. If c1 succeeds then apply c2. Otherwise fail

cl ORTHENC c2 = (c1 ANDTHENC TryC c2) ORELSEC c2
ProgressC c apply ¢, but fail if result same as IdC ¢
RepeatC c = TryC (ProgressC c ANDTHENC RepeatC c)
RepeatiC c = ¢ ANDTHENC RepeatC c
RepeatForC n c apply ¢ n times.
FirstC cs = c1 ORELSEC ... ORELSEC cn (Fail if cs = [, c1if cs = [c1])
SomeC cs = c1 ORTHENC ... ORTHENC cn (Fail if cs = [, c1if cs = [c1])
A11C cs = c1 ANDTHENC ... ANDTHENC cn (IdCif cs = [J, clif cs = [c1])
IfCp c = if p t then c else FailC
SubIfC q ¢ apply c to selected subterms in left to right order.
apply to ith subterm if (q t 1) is true.
SubC ¢ = SubIfC (\t i.true) c
NthSubC n ¢ = SubIfC (\t i. i =n) ¢
AddrC addr c apply c to addressed subterm
NthsC ns ¢ Walk t in preorder order, tentatively applying ¢, but only

doing conversions on the successes of ¢ numbered in ns.
Avoid walking into subterms of any converted subterm.

NthC n ¢ = NthsC [n] c

HigherC c = ¢ ORELSEC SubC (HigherC c)
LowerC c = SubC (LowerC c) ORELSEC c
SweepDnC ¢ = ¢ ORTHENC SubC (SweepDnC c)
SweepUpC ¢ = SubC (SweepUpC c) ORTHENC c
TopC ¢ = HigherC (RepeatlC c)

DepthC c = SweepUpC (RepeatiC c)

9.7.6 Applying Conversions

Rewrite (c:convn) (i:int) : tactic
Apply conversion c¢ to clause i. The subgoal with the result of the conversion is always labelled
main. The rest have various labels that all fall into the aux subgoal label class.

RW —4.f Rewrite

RWH ¢ =4, RW (HigherC c)

RWU ¢ =4, RW (SweepUpC c)

RWD ¢ =4, RW (SweepDnC c)

RWN n ¢ =4 RW (NthC n c)

RWAddr addr ¢ =4 RW (AddrC addr c)

RewriteType (c:convn) (i:int) : tactic
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Apply conversion c to type of member or equality term in clause i. The subgoal with the
result of the conversion is always labelled main. The rest have various labels that all fall into
the aux subgoal label class. The advantage of this tactic over the usual Rewrite is that this
generates simpler well-formedness goals. In particular, this tactic generates no well-formedness
goals involving the equands of the equality or the element of the member term.

RWT —g4.; RewriteType

apply_conv (c:convn) (t:term) : term
apply_conv evaluates a conversion with an empty environment. It is very useful for testing
conversions.

9.7.7 Lemma Support

The rewrite package must have access to several kinds of lemmas in order to construct justifications
for rewrites. This section describes those lemmas.

Note that for order relations, one only needs lemmas for one direction. For example, one doesn’t
require both the lemma

F Va,b,cca<b=b<c=>a<c
and
F Va,b,cca>b=>b>c=>a>c

If Nuprl finds a lemma missing in the course of constructing a rewrite justification it prints out
an error message suggesting the kind and structure of the missing lemma. After entering it, you
need to evaluate the function

initialize rw_lemma_caches : unit -> unit

on argument () in the ML Top Loop; for efficiency reasons, the rewrite code caches information
about these lemmas and hasn’t been set up yet to automatically update caches after changes to
the available lemmas in the library.

9.7.7.1 Functionality Lemmas

Functionality lemmas give congruence and monotonicity properties of terms. They are required by
the SubC conversional to construct tactic justifications for the rewrite of terms based on the tactic
justifications for rewrites of the immediate subterms of those terms.

A functionality lemma for a term with operator op should have the form

Vz1:81 .. ze:S. Ve, Ty, 2, ynidn. A= ... =2 Ay
=T TIPS D TaTaln = op(Z1; .. 2n) R oop(yis i Yn)

where £ > 0 and m > 0. The V’s and A’s can be intermixed, but the antecedents containing the r;
must come afterward and be in the same order as the subterms of op.

The SubC conversional finds functionality lemmas in the library by assuming that a naming
convention has been followed. Specifically, the functionality lemmas in the library for operator op
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should be named opid_functionality[_indez] where opidis the opid of op and _indez is an optional
suffix, used to distinguish lemmas when there is more than one for a given op.

Functionality lemmas are not explicitly needed when the r; and r are all Nuprl’s equality. In
this case the functionality information can be derived from the well-formedness lemma for op.

If op binds variables in its subterms, then those same variables should be bound by universal
quantifiers wrapped around the appropriate r; antecedents. For example, the lemma for function-
ality of 3 with respect to the & relation is:

+ VAl,AQZUZ'
VPllAl — Pz VP2§A2 — I[DZ
A=A, ¢T;
= (VmAlPl[x] =4 P2[$])
= Jz:Ay. Pilz] & Jx:Ay. Pz

When more than one functionality lemma is created for a given operator, they must be ordered
with the specific 71 ...r, first. SubC searches for functionality lemmas in the order in which they
appear in the library and if this recommended order is not followed then it might pick up the wrong
lemma.

9.7.7.2 Transitivity Lemmas

Transitivity lemmas give transitivity information for rewrite relations. They are used to construct
the tactic justification in the ANDTHENC conversional.
Transitivity lemmas should be of form:

Vz1:91 ... 2528, Vi, 20, 23T Ay = ... = Ay = 1 Ty Ty = To T Tz = Ty Te T3

where £ > 0 and m > 0. For now there is a restriction that r. should be the weaker of r, and r;.

ANDTHENC finds transitivity lemmas in the library by assuming that a naming convention has
been followed. The lemmas must be named opid-of-r._transitivity_indez, where the _indez is
optional, and is only needed to distinguish lemmas if there is more than one for a given r.. A
transitivity lemma is not needed for equality.

9.7.7.3 Weakening Lemmas

Weakening lemmas should have form
Vz1:91 ... zp:8,. Vo, 20T Ay = ...=> Ay = @1 Tq Tg = T1 Tp To

where £ > 0, m > 0 and rp is some weaker relation than r,.

Lemmas in the library must be named opid-of-ry _weakening_indez, where the _indez is optional,
and is only needed to distinguish lemmas if there is more than one for a given 7.

Currently weakening lemmas are required for all reflexive relations r, with r, being equality.
They extend the usefulness of the transitivity and functionality lemmas.
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9.7.7.4 Inversion Lemmas
Inversion lemmas should have form
Vz1:91 ... 25:9;. Vo, 20T Ay = ... Ay = 217 29 => 29 T X1

where £ > 0 and m > 0. Inversion lemmas in the library must be named opid-of-r_inversion.

Inversion lemmas are required for equivalence relations, but not equality or order relations.
They are used by the Rev* atomic conversions, and in conjunction with the weakening, transitivity,
and functionality lemmas when these lemmas mix order and equivalence relations.

9.7.8 Environments

An environment is a list of propositions and declarations of variable types and that are being
assumed. The environment of the conclusion of a sequent is the list of hypotheses of the sequent.
The environment of a hypothesis is all the hypotheses to the left of it. We can also talk about local
environments of subterms of sequent clauses. For example, in the sequent

z1:Hy, ...,x:H, F VyT.B — C
the local environment for subterm C of the conclusion is
x1:Hy, .. xH,, yT, B

The rewrite conversionals keep track of the local environment each conversion is being applied
in, and every conversion takes as its first argument an e of type env which supplies this local
information.

The environment information is used by conversions in three ways by the atomic lemma and
hypothesis conversions.

o Declarations in the environment are used to infer types which help to complete matches. (See
Section 9.1.7).

¢ Environments are used to form the subgoals that have to be discharged for conditional lemma
rewrites to go through. For example, if C' in

x1:Hy, ... xp:H, F YyT.B —C
is rewritten by a rewrite rule based on the lemma
V2T A, =t =t

and the variable z in the lemma is bound to a term s by the match of C' against ¢, then the
subgoal which has to be proven for the rewrite rule to be valid is

x1:Hy, .. xn:H,, yT,B, B Ag

e The hypothesis conversions access the hyp list via environment terms.

Currently the system must be told explicitly how the environment is extended when it descends
to the subterms of a term. Built in is knowledge of the ¥, 3 and = terms. The system assumes
other terms do not modify the environment, unless otherwise told by the user. see the env.ml file
for further details.
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9.7.9 Relations
9.7.9.1 Introduction

The rewrite package supports rewriting with respect to both primitive and user-defined equivalence
relations. Some examples are:

e ~, the computational equality relation,

e - = - € -, the primitive equality relation of the type theory,

o <, if and only if,

¢ - = ‘mod-, equality on the integers, modulo a positive natural,
e =,, equality of rationals represented as pairs of integers,

e =, the permutation relation on lists.

The package also supports ‘rewriting’ with respect to any relation that is transitive but not
necessarily symmetric or reflexive. This needs a bit of explaining. Proofs involving transitive
relations and monotonicity properties of terms can be made very similar in structure to those
involving equivalence relations and congruence properties.

For example, consider the following proof step that came up Forester’s development of real
analysis in Nuprl [?].

i:N*t
:N*T
f:NT — Nt

mono( f)
l_

fitg1/f5 <q 1/it+q1/5
BY RWH (RevLemmaC ‘monotone le‘) O

l_
1)i+41/7 <, 1/i+41/7

Here, the definition mono(f) is:
mono( f) =ges Va,b:Nt. a <b= fa< fb
and the theorem monotone_le is:
FVf:Nt — N*. mono(f) = Vn:Nt. n < fn
The tactic RWH ¢ i tries to apply the conversion ¢ once to each subterm of clause 7 of the sequent

and the conversion RevLemmaC name converts lemma name into a right-to-left rewrite rule. Other
examples of monotone rewriting can be found in Section 77?.
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It is interesting to note that logical implication = can be treated a rewrite relation, since it is
transitive. When it is, we have a generalization of forward and backward chaining.

For each user-defined relation, the user provides the rewrite package with lemmas about tran-
sitivity, symmetry, reflexivity and strength (a binary relation R over a type T is stronger than a
relation R’ over T'if for all @ and b in T, the relation ¢ R b implies that @ R’ b). These lemmas are
used by the package for the justification of rewrites (see Section 9.7.7).

The user also provides a declaration in an ML object that identifies relation families and extra
properties of relations. These declarations are described in the next section.

9.7.9.2 Declaring Relations

The rewrite package treats rewrite relations as first-order terms: the two principal arguments of
relations are expected to be supplied as subterms rather than by application. If a relation term also
takes additional parameters as subterms, these should always be positioned before the principal
argument subterms. For example, the ¢ = ¢/ € T equality relation has 7" as a parameter and has
logical structure equal(T;t;t').

Relations are most commonly typed-valued, but boolean-valued relations are also accepted by
the rewrite package. When a boolean-valued relation is to be used in a context where a type-valued
relation is expected, the relation should be wrapped in the assert abstraction which converts
boolean-valued expressions to type-valued ones.

Equivalence relations should be declared by an invocation of

declare_equiv_rel
rnam : tok
stronger-rnam : tok

() : unit

This declares the term with opid rnam to be an equivalence relation, and the term with opid
stronger-rnam to be an immediately stronger equivalence relation. Commonly, stronger-rnam will
be ‘equal‘. Most often, there will be only one such declaration for each rnam. However, multiple
declarations for a single rnam are sometimes needed and are quite acceptable.

Order relations are grouped into relation families. A family is a lattice of order and equivalence
relations of form:

where weaker relations are higher in the lattice, and relations within a family satisfy
a<b <= b>a
a<b <= b>a
a=b <= a<bAb<a
a<b < a<bAr-(b<a)

The converse of both strict and non-strict order relations R should always be defined directly
in terms of R. For example, the definition of the abstraction rev_implies is

P<=Q=45Q=P
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The package assumes that order relations can be inverted by folding and unfolding such definitions.
Family should be declared using an invocation of

declare_rel_family
1t : term
le : term
eq : term
ge : term
gt : term

() : unit

Dummy terms (with structure dummy(), displaying as ?, and entered using dummy) should be used
as placeholders when a member of a family is missing. A notational abbreviation has been defined
for such invocations which can be entered by the name relfam. It displays as

Relation Family
[1t]
[1e]
[eq]
[gel
[gt]

YIVILIN D

Examples include for the standard order relations on the integers

Relation Family
i< j

(S

i
.
i

YIVILIA A

)

DIV A

and for the ‘divides’ and ‘associate’ relation in a theory of cancellation monoids [?, 7]

Relation Family
aplbing

:a| bing

ta~{grhb

:a|bybing
?

YIVILIA A

If there are no defined order relations associated with an equivalence relation, then there is no need
to include the equivalence relation in an order relation family. It is quite permissable (and not
infrequent) that several order relation families share the same equivalence relation.

The partial order of strengths of relations is taken to be the reflexive transitive closure of the
relation defined by the M-shaped graphs for each family and the equivalence relation declarations.
Additional relations between order relations can be noted by using

declare_order_rel_pair
stronger-rtm : term
weaker-rtm : term
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So far these methods of describing the partial order have been adequate, though the methods might
well need reorganisation in the future.

These relation declarations should be inserted in ML objects that are positioned after the
referred-to relations have been defined, but before they are used in any lemmas that might be
accessed by the rewrite package.

In Nuprl4.1, the relation declarations

add_equiv_rel_info ( name:tok) ( rels:tok list) ;;
add_order_rel_info ( name:tok) ( inverse-name:tok) ( is-refl:bool) ( rels:tok list) ;;

were used. These are now obselete and should be replaced by the ones described above.

9.7.10 Justifications
There are two types of justifications.

Computational Justifications These indicate precise applications of the forward and reverse
direct computation rules. They are comparatively very fast and generate no well formedness
subgoals. The rewrite package uses these whenever possible.

Tactic Justifications These are more generally applicable. Extensive use is made of lemmas, and
many well formedness subgoals are generated.

Conversions generating both types of justification can be freely intermixed; the system takes care
of converting computational justifications to tactic justifications when necessary.

9.7.11 Substitution

Nuprl’s logic has a couple of rules for carrying out simple kinds of substitutions. These rules are
accessible through the tactics described here. Occasionally these rules are useful; they can generate
fewer and easier-to-solve well-formedness goals than the rewrite package.
Subst (eq:term) c
eq should be a proposition of form t1 = t2 € T. The effect of Subst is to replace all occurrences
of t1 in clause ¢ by t2. Three subgoals are generated; a main subgoal with the substitution
carried out, a wf subgoal to prove functionality of the clause, and an equality subgoal to prove
that t1 = ¢2 € T.For example:

H...H, F C,
BY Subst ‘a=be T' 0

main H{...H, v G
wt Hy..H,, 2T + C,=C, €U,
equality Hy...H, F a=b€T
where U, is the inferred universe for clause c. Universe inference can be overridden by supplying
an optional universe argument with the Using tactical.
HypSubst i c
Runs the Subst tactic using the equality proposition in hypothesis i. Generates a wf subgoal
and a main subgoal.
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RevHypSubst i c

As HypSubst, except that equality hypothesis is used right-to-left rather than left-to-right.
SubstClause t c

Replace clause ¢ with term t. Generates a main subgoal and an equality subgoal.

9.8 Type Inclusion

Inclusion i
The Inclusion tactic solves goals of form

ot FrzeT
or
L, ited,. . kteT’
where either types T and T’ are equivalent or T is a proper subtype of T/. The specific kinds
of relations between 7" and 7" that the Inclusion currently handles are roughly:
e T and T’ are the same once all soft abstractions are unfolded

e T and T’ are both universe or prop terms and the level of T is always no greater than the
level of 7" for any instantiation of level variables.

e T and T’ are each formed by using one or more subset types, and both have some common
superset type. In this case Inclusion tries to show that the subset predicates (if any) of
T" are implied by the subset predicates (if any) of T" together with other hypotheses.

e T and 7’ have the same outermost type constructor. In this case, the inclusion goal is
reduced to one or more inclusion goals involving the immediate subterms of 7" and T".
Currently works for function, product, union and list types.

e There is a lemma in the library stating that 7" is a subtype of T".

Inclusion also solves similar goals where one or both of the membership terms are replaced
by equality terms.

For the inclusion reasoning involving subset types to work, you need to supply information
about abstractions involving subset types using the function add_set_inclusion_info. See the
theory int_1 for several examples of the use of this function.

9.9 Miscellaneous

Cases [t1;...;tn]
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Does n-way case split. For example:

. EC
BY Cases [t1;...;l,]

assertion: ... F t;V...Vi,

GenConcl ’t=v €T’
v should be a variable. Generalizes occurrences of ¢ as subterms of the concl to variable ». Adds
new hypotheses declaring v to be of type T and stating that t = v € T.

ApFunToHypEquands (z:var) (v,:term) (V,:term) (::int)
If hypothesis i is of form ¢ = b € T, then this tactic applies the function Az.v, to the terms a
and b to give a new hypothesis in the subgoal labelled main of form v, = v, € V,. Also creates
a couple of aux subgoals. See file inclusion-tactics.ml for details.

Fiat
If you about to give up hope on a theorem, don’t despair. This tactic is guaranteed to provide
satisfaction.?

9.10 Autotactics

The autotactics are used primarily for typechecking. Trivial
Does various steps of trivial reasoning, including.

e NthHyp
NthDecl

e Eq

e Contradiction - Both P and =P occur in hypothesis list.

Concl is the term True or one of the hypotheses is either the term False or the term Void.

Auto
Repeatedly tries the following until no further progress is made.
e Trivial
e GenExRepD

e MemCD for member and EqCD on reflexive equality conclusions. Only works on non-recursive
primitive terms.

e Arith

2This tactic uses Nuprl’s because rule. The use of this rule should be regarded as experimental. Despite much
hard work, neither Stu nor Doug have yet succeeded in proving it valid according to any of their semantics.
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o Arithmetic equality reasoning, in case concl is @« = b € T where a and b arithmetically
simplify to same. (By arithmetically simplify, we mean simplify subterms which involve
the basic arithmetic operators +, —, *, / and rem?>.)

o If conclis e« € T or a = b € T where T is subset of the integers, then open up 7.

STAuto
Like Auto but also tries using the SupInf tactic.
Auto’
Like Auto but uses the SupInf’ tactic instead of the Arith tactic.
Auto and its variants frequently encounter the same goals over and over again, so

9.11 Transformation Tactics

PrintTexFile (name:string)
name should be a filename without extension. Two files are created. name.prlis a file which can
be viewed by an appropriate version of emacs running with one of Nuprl’s 8-bit fonts. name.tex
is a self-contained file suitable for input to IATRX.

Mark (a:tok)
Mark stores the proof tree at and below the point in the proof where it is invoked in the proof
register named a.

Restore (a:tok)
Restore the proof stored in proof register a by a previous Mark.

Copy (a:tok)
Run all the tactics associated with the proof stored in proof register a. Copy is useful if you
want to copy a pattern of reasoning used in one part of a proof to another part. Copy can also
be used to copy from one proof to another.

Stores the current proof in the ML variable pf. This is very useful when debugging tactics.

9.12 Constructive and Classical Reasoning

9.12.1 Constructive Reasoning
The constructivity of Nuprl’s logic manifests itself in two main ways with the tactics:
1. For any proposition P, the goal PV =P is not in general provable.

2. When applying the D tactic to a hypothesis that has a set term outermost, the predicate part
of the set term becomes a hidden hypothesis. For example:

dad{yT|PY, oo F
BY Di

v i+ 1P, oo F

#Currently simplification involving / and rem isn’t working
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Here, the [] surrounding the hypothesis number i+ 1 indicate that this hypothesis is hidden. A
hidden hypothesis is not immediately usable though there are ways in which it might become
usable later in a proof.

Tactics to simplify dealing with these issues are described in the next two sections.

9.12.2 Decidability

Many useful instances of PV =P are provable constructively and the ProveDecidable tactic is set
up to construct these proofs in a systematic way. To discuss it, we first introduce the abstraction:

decidable: Dec(P) =44 PV -P

which can be found in the core_2 theory. It turns out that the property Dec(P) can be inferred
for many P from knowing that Dec(Q) for the immediate subterms @) of P. ProveDecidable takes
advantage of this fact and attempts to prove goals of the form

...F Dec(P)

by backchaining with any lemmas in the Nuprl library that have names with prefix decidable_.
(Note the two underscores.) There are many examples of such lemmas in the core 2 theory.
ProveDecidable is usually invoked via the Decide tactic:

Decide (@) :term)

Used to case-split on whether proposition ¢} is true or false. Generates two main subgoals; one
with the new assumption ¢} and the other with the new assumption —(). Decide also creates
a subgoal ... F Dec(Q) and immediately runs the ProveDecidable tactic on this subgoal.
ProveDecidable generates only subgoals with labels in the aux class. If ProveDecidable fails
then Decide fails too. To understand why, use the tactic Assert to assert Dec(®)) and run
the ProveDecidablel tactic to try and prove this assertion. ProveDecidablel will generate
subgoals with label decidable? to indicate those components of ¢) that it couldn’t prove were
decidable. Use ProveDecidablel rather than ProveDecidable; ProveDecidable fails when it
sees such subgoals.

9.12.3 Squash Stability and Hidden Hypotheses

A hidden hypothesis P in a sequent o can be unhidden if one of two conditions are met:
1. The proposition P is squash stable.

2. The conclusion of ¢ is squash stable.

A proposition is squash stable if it is possible to figure out what its computational content is, given

that you know that some computational content exists (in the classical sense). The computational

content of a proposition is some term that inhabits the proposition when it is considered as a type.
The squash stable predicate is defined in the core_2 theory as follows:

sq_stable: SqStable(P) =4y |P=>P
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The proposition | P (read ‘squash P’) is considered true exactly when P is true. However, P’s
computational content when true can be arbitrary whereas | P’s computational content when true
can only be the trivial constant term that inhabits the unit type. (| P is defined as {z:Unit|P}
where z does not occur free in P).

As with decidability, it turns out that the property SqStable( ) can be inferred for many P
from knowing that SqStable(Q) for the immediate subterms @) of P. It is also true that Dec(P) =
SqStable( P) for any P. The tactic ProveSqStable takes advantage of these facts and attempts to
prove goals of the form

... SqStable( P)

by backchaining with any lemmas in the Nuprl library that have names with the prefixes sq_stable__
or decidable__ (note the two underscores in each case). There are many examples of such lemmas
in the core_2 theory.

Since ProveSqStable can be rather slow, it isn’t called by the D tactic when D is applied to
a set type hypothesis {z:T|P,}. However, D does check the sequent conclusion for trivial ways in
which it might be squash stable.

The D tactic does recognise property lemmas for abstractions that are wrapped around set types.
Property lemmas state that particular set type predicates are squash stable. If D is applied to an
abstraction wrapped around a set type and there is a property lemma for the abstraction, then the
predicate of the set type is always added unhidden to the hypothesis list.

Consider some abstraction Az where the T are variables that have been slotted in for the
immediate subterms of A. Say that Az unfolds to {y:7%|Ps,}. Then the property lemma for A
should have form

FVZT. V2: Az P,

and should be named opid_properties where opid is the opid of A. Examples of properties lemmas
can be found in the theory int_1. Property lemmas can often be completely proven using the tactic
ProvePropertiesLemma.
Tactics related to unhiding are as follows:
UnhideSqStableHyp i
Hypothesis i should be a hidden hypothesis. This tactic tries to prove the hidden hypothesis
squash stable using ProveSqStable.
UnhideAllHypsSinceSqStableConcl
This tactic tries to prove the conclusion squash stable using ProveSqStable. If it succeeds in
this, all hidden hypotheses are unhidden.
Unhide
Tries to unhide hidden hypotheses, first by checking whether the conclusion is squash stable
and then, if this fails, by checking whether each hidden hypothesis is squash stable.
AddProperties ¢
Hypothesis 7 should be declaration of form A or a proposition of form ¢t € A or ¢t = ¢’ € A where
in either case A is an abstraction with a properties lemma. AddProperties adds the predicate
part of the set type underlying A as a new hypothesis immediately after ¢. It does not change
hypothesis 1.
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9.12.4 Classical Reasoning

To reason classically, you need to have as an explicit hypothesis
VPP, PV -P
It is best to have this hypothesis in the form of the xmiddle abstraction:
xmiddle: XM; =g, VP:P;.Dec(P)

The Decide tactic recognizes whenever the xmiddle abstraction occurs as some hypothesis, and
in this case is trivially able to justify decidability. Also, the D tactic on set types, maybe with
abstractions wrapped around them, always yields an unhidden set predicate, whether or not there
is an abstraction with a properties lemma.

If you want to prove a non-constructive theorem, it is simplest to add the xmiddle proposition
as a precondition of the theorem, so that the theorem is of form F XM; = P.

There are two common cases when in proving a part of a constructive theorem, classical rea-
soning becomes admissable. These cases, and a recommended method in each case for adding an
xmiddle hypothesis are as follows:

1. If the conclusion is the squashed exists term | dz:T. P, and you are about to apply the tactic
With ¢ (D 0). Squashed exists is defined in core_1 as:

sq-exists: | Ja:T. Plz] =44 {2:T|P[z]}
First use the tactic AddXM:
R = P75 A o
BY AddXM 1 THEN With ¢ (D O)

wf XMi...F teT
main XM:... - P
wf XMi...2:T + P, el

AddXM 1 alone adds the hypothesis XMi as a hidden hypothesis, so there are no soundness
problems here. XMi becomes unhidden in the first and third subgoals since here the con-
clusion is recognized as being trivially squash stable. XM becomes unhidden in the second
subgoal since from here on, any computational content in the proof cannot contribute to the
computational content of the original goal of the theorem.

2. If the conclusion is squash stable. Again first run the tactic AddXM 1. If the conclusion is
obviously squash stable, then XMz is added unhidden. If the conclusion is not obviously
squash stable and XM: gets added hidden, you should then run the Unhide tactic.

The AddXM tactic assumes that the proposition | (VP:P;. PV —P) is true; that is, the correspond-
ing type is inhabited. This is a very reasonable assumption to make, but it is not true according
to the semantics given for Nuprl’s type theory in S. Allen’s thesis.
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9.13 Further Information

Consult the ML files. Start with 1load-ml.ml which loads all the other ML files.
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Chapter 10

Theories

10.1 Theory Structure

The main directories containing theories are listed in Section 1.5. Each theory directory contains
an ML file theory-init.ml. This file contains commands that tell Nuprl about the theories in the
theory directory, including information about the dependencies of theories on one another. It also
should contain comments that summarize the contents of each theory in the directory.

Theory directories should also contain up-to-date listings of each theory. Short listings are
named theory-name.prl and long listings containing printouts of proofs are named theory-name_long.prl.
These listings use characters from Nuprl’s 8-bit character set and so are best viewed using an editor
running with one of Nuprl’s fonts. There are also self-contained IATRpX versions of the listings in
files with .tex rather than .prl file-name extensions.

MI commands for creating, loading, editing, dumping and printing theories are described in
Section 3.4.3.

10.2 Definitions

10.2.1 Structure

A definition in a Nuprl theory for a term with opid opid usually includes the following objects in
the order in which they are listed here:

o A display form object, usually named opid_df, specifying how instances of the definition
should be displayed. The right-hand-side of each clause in the display form definition shows
the abstraction without any display forms. Its useful to look at this if you are confused as to
the structure of a abstraction.

e An abstraction object, usually named opid, that specifies how the definition unfolds. You
indicate to the Unfold tactic abstractions to unfold by giving the opids of the abstractions.
However, the Fold tactic takes the names of the objects in which the abstractions are defined.
When opid is used as the name of the abstraction object, the same name can be used for
referring to an abstraction when folding and unfolding.
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o A well-formedness lemma, usually named opid_wf, that helps Nuprl type-check the definition.
Occasionally there is more than one well-formedness lemma, in which case the objects are
distinguished by adding suffices to opid_wf.

Sometimes there are extra ML objects and lemmas associated with a definition. Definitions
are not only used for the Nuprl object language; they are also in nearly all the structures that are
edited using the Nuprl editor. No well-formedness lemma is applicable in these cases.

Definitions can be set up, by creating each object in turn and editing its contents from scratch.
This is a rather laborious process. The following sections describe various ML functions that can
be evaluated in Nuprl’s ML, Top Loop to more rapidly set up new definitions.

Nuprl abstractions cannot be recursive. However, recursive definitions can be introduced by
using the Y combinator. See Section 10.2.4 for details.

10.2.2 Adding Untyped Definitions

The function

utdef
lhs : term
rhs : term
place : string

() : unit

creates definitions without typing lemmas. lhs is the new term constructor and rhs is the what it
is defined as. [hs and rhs are used for the left-hand and right-hand sides of the abstraction for the
new definition. place is a library position as described in Chapter 7. [hs is invariably a new term,
so you usually will want to use the new term creation feature of the term editor to enter it (see
Section 4.5.1). If the opid of the new definition is id, then utdef adds 2 new objects to the library
starting at position place:

e a display object named id_df which defines a default display form for the lhs term,

e an abstraction object named id. [hs and rhs are used for the left-hand and right-hand sides
of the abstraction.

utdef has no effect if an object with name id already exists. Often after running utdef you will
want to customize the display form. For example you might add whitespace related formats to the
display form left-hand side.

10.2.3 Adding Typed Non-Recursive Definitions

The function

def
tdef : term
place : string

() : unit
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creates definitions with typing lemmas. The term tdef should have structure
Ve 1. .zl Ay = ...=> A, => lhs=rhs eV

where £ > 0 and m > 0. The term lhs is the new term being defined and the term rhs is what
it is being defined as. All the free variables in lhs should be appropriately typed in the context
x: Ay ...z Ty, place is a library position.

On evaluation of def, a display form object opid_df, an abstraction opid, and a typing lemma
opid_wf are created. The typing lemma is constructed from the tdef term. It has form:

Ve : 1. czpTe. Ay = ...=> A, = lhseV

An attempt is made to prove it by unfolding the abstraction and running the Auto tactic. In most
cases, this attempt succeeds in completely proving the lemma.

Note that the so_apply abstraction should be used for the second-order variables in the [hs and
rhs terms. def takes care of converting these to second-order variables for the abstraction object.

When doing proofs, the basic tactics for folding and unfolding definitions are the Fold and
Unfold tactics. See Chapter 9 for details.

Currently, the only kinds of parameter variables that can be used in typed definitions are level
expression variables. This is because Nuprl doesn’t currently allow any other kinds of parameter
variables in lemma goals and in proofs. Hopefully this should be fixed soon.

An example invocation of def is:

M> def
> [va,B:U. Vp:A x B. pr_swp{}(p) = <p.2, p.1> € B x Al
> "-test_1_end" ;;

This creates the library objects

*D pr_swp_df

pr_swp(<p:p:*>)== pr_swp{}(<p>)
*A pr_swp pr_swp(p) == <p.2, p.1>
*T pr_swp_wf

VA,B:U. Vp:A X B. pr_swp(p) € B X A

10.2.4 Adding Recursive Definitions

Nuprl’s object language contains terms for doing recursion over types such as lists and integers.
These terms can be awkward to use, and we recommend instead that all recursive definitions are
built using the Y-combinator. The ML function recdef greatly simplifies constructing general re-
cursive definitions using the Y-combinator. recdef also takes care of introducing a well-formedness
lemma for the definition. Its usage is:

recdef
tdef : term
place : string

() : unit
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The term tdef should have structure
VeI .oz T VyelSh oo yeilSi. Av=> oo.=> Ay = lhs=rhs € V
where the term [hs has form

id{pl,...,pi}(mll;...;:U;/) Y Y2 ... Yk

i,7,7,k,1 > 0, the variables 2/ are a subset of the variables variables z,,, and none of the variables
Y, are free in any of the antecedent propositions A,,.

recdef allows you to create recursive definitions with both curried arguments y; ... yp supplied
by application, and subterm arguments z} ... m;-,. The parameters p; ... p; are specified as in
abstraction definitions.

The rhs term should include at least one instance of the head of the application in /hs. That is,
a term of form

id{p1,...,pi}(t; .. .5t50)

where the p,’s are the same as in [hs. All the free variables in [hs should be appropriately typed
in the context z:T%...2;:T;. place is a library position.
On evaluation of recdef, four objects are added to the library.

e A display object named id_df which defines a default display form for the id term.
e an abstraction object named ¢d which defines the abstraction
id{pr,...,pi}(zy;.. 5 2%)

—def
Y (Af 2y aly oy rhs[iddpy, ..o (B tp) e f ot tp]) 2y 2l

e An ML object named id_ml. This contains an invocation of a ML function that updates caches
that hold information conversions related to the definition. These conversions are described
below. This function invocation is given the display form:

lhs ==r rhs

and it serves to document the recursive definition. For this reason, the abstraction objects in
recursive definitions are usually made invisible in theory listings.

o A theorem object named id_wf for a well-formedness theorem. The goal of the theorem is
constructed from the tdef term. It has form

Vo Ty ..oz T Ay = ooo= Ay = id{pr, .. .opuH (215 5 25) € 1251 — o oyeiSe — VL

An initial tactic is executed on the goal of this theorem to set up a subgoal that is usually
suitable for induction. You then need to go in and complete the proof of this theorem yourself.
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As with def, so_apply abstraction should be used for the second-order variables in lhs and rhs.
recdef takes care of converting these to second-order variables for the abstraction object.

The basic conversions associated with a recursive definition are RecUnfoldTopC and RecFoldTopC.
If the definition has arguments provided by application, then additional conversions RecEtaExpC
and RecEtaConC are defined to n=-expand and n-contract the definition. More information on
these and related conversions can be found in Section 9.7.5.

An example invocation of recdef from the ML Top Loop is:

M> recdef
> VsS,T:U. V£:S — T. Vas:S List.
cmap{}(£f) as
= case as of
0= 11
a::as’ => (f a)::(cmap{}(£) as’)
esac
€ T List!
> "-test_1_end" ;;

This creates the following library objects:

*D cmap_df cmap(<f:f:*>)== cmap{}(<f>)
*A cmap
cmap(f) ==
Y
(Acmap,as.
case as of
0o =10
a::as’ => (f a)::(cmap as’)
esac)
*M cmap_ml
cmap(f) as
==r case as of
0o =10
a::as’ => (f a)::(cmap(f) as’)
esac
#T cmap_wf
Vs,T:U. Vf:S — T.
cmap(f) € S List — T List

10.2.5 Adding Set Definitions

Often new types are defined as subsets of old types using Nuprl’s set type. Usually, there are
standard extra objects associated with set definitions. The function setdef is a variant on def
that automatically creates default versions of these extra objects that are good enough for most
purposes. It’s usage is identical to that of def.

The extra objects created are:

e an ML object ¢d_ml_inc. This tells Nuprl how to prove type-inclusion relationships between
the old and new types.
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e a properties lemma id_properties. This helps in accessing the set predicate information. The
structure and use of properties lemmas is described in Section 9.12.3.

The properties lemma is automatically proven providing the set predicate is squash stable. In
the event that you want to introduce a set definition with a predicate that isn’t squash stable,
it is useful to use instead a squashed version of the predicate; squashed predicates are always
squash-stable.

In order to add these extra objects for existing definitions the function

add_inc_objs : tok —> unit

can be used. Its argument should be the opid of the definition.
An example invocation of setdef is

M> setdef
> VT:U. Vn:N.
vec{}(T; n) = {as:T List| |las|| = n} € Ul
> "-test_1_end" ;;

and the objects created by this invocation are:

*D vec_df
vec(KT:T:*>;<n:n:*>)== vec{}(<T>; <n>)
*A vec
vec(T;n) == d{as:T List| |las|| = n}
*T vec_wf VT:U. Vn:N. vec(T;n) € U

*M vec_ml_inc
add_set_inclusion_info
‘vec’ ‘listf
AbSetDForInc Auto ;;
*T vec_properties

VT:U. Vn:N. Vas:vec(T;n). |las|| =n

Sometimes, the predicate in a set definition can have a number of parts and it is desirable to
have a property lemma for each part. The function

add_seperate_property_lemmas : tok -> unit

can be used to add such property lemmas. It assumes that compound and basic attributes have
appropriately been added to the definitions of the abstractions used in the predicate.

10.3 Notational Abbreviations for ML

Nuprl abstractions can be used to provide notational abbreviations for ML. A couple of current
abstractions for M1, add common suffices to tactics.

e (T ...) is an abbreviation for 7" THEN Auto. An editor command (c-.)t, given when at a
text cursor when editing ML, inserts this abbreviation and leaves a text cursor at the internal
slot for the argument 7.

e Similarly, (" ...a) is an abbreviation for 77 THENA Auto, and the appropriate editor com-
mand is (c-.)a.
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10.4 Module Types

Support is provided for defining module types. These are essentially record types, where the type
of each field of an instance can depend on previous fields of the instance. They are very useful
for defining ADT’s (abstract data types) and algebraic classes. Module types are allowed to have
parameters. For example, an ADT for queues could be created that takes the type of queue elements
as a parameter. Module types are currently implemented using Nuprl’s ¥ type.

An ML function create_module helps with setting up new module type definitions, adding
projection functions, and updating the AbReduce tactic to recognize applications of the projection
functions.

The create_module function should be used as follows:

1. Pick a name for your module; say modname.

2. Create an ML object create_modname to hold the create_module invocation. The invocation
needs to be part of the library to ensure that the relevant computation rules are added
each time the theory containing the module definition is loaded. The function only creates
the definition objects themselves if they are initially absent. The invocation also serves to
document the module. With the abstractions explained below, it presents a clearer and more
succinct account of the module structure than do the definitions themselves that make up the
module.

3. It is most elegant to use a few abstractions to pretty up the invocation. Remember, when you
have a text cursor in a text sequence, a term slot can be opened up using (c-u), and when
you have a term cursor at an empty term slot, a text sequence can be inserted using (c-;).

The abstractions for modules currently reside in the m1_1 theory.

The abstraction holding the create_module invocation has the editor alias classdecl. Enter
it in the ML object by opening up a term slot in the object’s top level text sequence, and
typing the name classdecl. By keeping the top level of the ML object a text sequence, you
are free for example to add ML comments preceding the create_module invocation. Without
fields filled in, the class declaration template should look like:

Class Declaration for: [example]

Long Name: [string]
Short Name: [string]

Parameters:
[parms]

Fields:
[fields]

Universe: [unil

4. Enter modname for the Long Name and some abbreviation of this for the Short Name. The
short name is used as a prefix for the names of the projection functions.

123



5. Initialize the [parms] and [fields] slots with empty text sequences.

6. Open up a term slot in the Parameters list for each parameter. Parameters are pairs of
variable names and types. They should be entered using another abstraction with alias name
mlbd. This initially looks like

[var] : [typel

where [var] is a text slot for the variable name, and [type] is a term slot for the corresponding
type of the variable. If there are no parameters, just leave the empty text sequence in this
slot.

7. Open up a term slot in the Fields list for each field. As with parameters, you can use the m1bd
abstraction for the fieldname and field type. Alternatively, you can use the mlbde abstraction:

([example]) [var] : [typel

This has an extra term slot for an example of the projection function for that field. Initially,
leave the term slot empty. Enter in the [var] slot the name of the field. The name of the
projection function will be the name entered here with a suffix of the short module name.
The type of a field can refer to constant types, the inhabitants of earlier fields or parameters.

Since the mlbd or mlbde terms are embedded in a text sequence, you can insert linebreaks in

the sequence, by simply getting a text cursor in the sequence and typing RETURN].

8. Fill in the [uni] slot with an appropriate universe term. This should be the lowest universe
that the module type inhabits. For example, if the module type itself involves no universes,
then this probably will be Uy; if the module type involves universe terms U;, then this will
be U;41, (commonly abbreviated to U’).

Here is an example of a class definition that has been instantiated according to the procedure
given so far:

Class Declaration for: [example]

Long Name: action_set
Short Name: aset

Parameters:
T: U
Fields:
([example]) car : U

([example]) act : T — car — car

Universe: U’

9. If you now check this object (use (c-x)ch), the definitions for the module are created in the
library. For the above example, the following definitions are created:
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10.

11.

*D action_set_df
action_set{<i:level>}(KT:T:*>)== action_set{<i>:1}(<KT>)
*A action_set

action_set{i}(T) == car:U X (T — car — car)
*T action_set_wf VT:U. action_set{i}(T) € U’
*D aset_car_df <a:aset:E>.car== aset_car{}(<a>)
*A aset_car a.car == a.l
*T aset_car_wf VT:U. Va:action_set{i}(T). a.car € U
*D aset_act_df <a:aset:E>.act== aset_act{}(<a>)
*A aset_act a.act == a.2

*T aset_act_wf
VT:U. Va:action_set{i}(T). a.act € T — a.car — a.car

If desired, edit the display forms for the module type and for the projections. For example,
the display forms could be changed to:

*D action_set_df
ASet{<i:level>}(<T:T:*>)== action_set{<i>:1}(<T>)
ASet (<T:T:*>)== action_set{i:1}(<T>)

*D aset_car_df |<a:aset:*>|== aset_car{}(<a>)

*D aset_act_df
Parens ::Prec(preop):: -<a:aset:E>== aset_act{}(<a>)
-== aset_act{}(<a>)

Here a couple of abbreviated display forms are defined for the the module type, one of which
hides the level expression in the case that it is simply the level variable i. Standard notation
is chosen for the carrier, and the action is denoted by a ‘.’ character. To avoid clutter, a
display form for the action is defined that hides the instance of the action_set module. This

[

can nearly always be determined from context.

Fill in the [example] slots in the module declaration. These serve purely to document the
module, and are discarded when the system unfolds the class declaration abstraction into raw
ML code. In the [example] slot on the first line, you should put an instance of the module
type, with the same parameter names as declared in the Parameters section. You might also
insert a membership term or an mlbd term to indicate a prototypical element. For the above
example, you could insert the term s € ASet(T) indicating that s is a prototypical element.

Fill in the example slots of the ml1bd terms with examples of the relevant projection functions,
operating on the prototypical element declared in the uppermost example slot. In the example,
the terms |s| and -s could be used.

With the given display form changes, and example terms, the final version of the example
class definition looks like:
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Class Declaration for: s € ASet(T)

Long Name: action_set
Short Name: aset

Parameters:
T: U
Fields:
(Isl) car : U

(.s) act : T — car — car

Universe: U’

12. Exit the create_modname object.

Examples of class definitions can be found in many of the algebra theories.
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Appendix A

The Lisp Debugger

You can get thrown into the Lisp debugger in several ways; for example if Lisp is interrupted, if
a breakpoint was mistakenly left in the Nuprl code or if you hit a bug. The particular debugger
appearance and commands given below are for Lucid Common Lisp. Other Lisps should be similar.

The initial message put out by the debugger should tell you what caused it to be invoked. To
resume after an interrupt or breakpoint, enter:

:CRETURN
To abort the current computation and restart, enter:
:aRETURN] (nuprl) RETURN

If you get a crash, you can get more information on it as follows. The initial crash message
might look something like:

>>Error: The value of S, (TTREE 108 97 100 116 59 59), should be a STRUCTURE

SYSTEM: STRUCTURE-REF :

Required arg 0 (S): (TTREE 108 111 97 100 116 59 59)
Required arg 1 (I): 1

Required arg 2 (TYPE): TERM

:C 0: Use a new value

:A 1: Abort to Lisp Top Level

_>|:|

Here, the "=> 7is the debugger prompt. Enter:

:bRETURN

Lisp prints a backtrace. For example:
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->:b

SYSTEM:STRUCTURE-REF <- OPERATOR-OF-TERM <- IDFORM-TERM-P <- (:INTERNAL
SOURCE-REDUCE VISIT) <- SOURCE-REDUCE <- TERM-TO-ML-ISTRING <-
PRL-SCANNER-INITIALIZE <- PRL-MLLOOP <- ML <- ML-MODE$ <- PROCESS-CMD
<- CMD-WAIT <- PRL-LOOP <- PRL <- EVAL <- SYSTEM:ENTER-TOP-LEVEL

_>|:|

Enter:

:nRETURN

2 or 3 times. For example:

tt -> n

OPERATOR-0F-TERM:

Required arg O (TERM): (TTREE 108 111 97 100 116 59 59)
-> :n

IDFORM-TERM-P:

Required arg O (TERM): (TTREE 108 111 97 100 116 59 59)

_>|:|

This provides a bit more information on the last function calls. When you send in a bug report,
include the error message, backtrace and function calls you have obtained as above. Also, mention
briefly what you were doing at the time of the crash.

To recover from a crash, enter

:a[RETURN]
at the debugger prompt. Lisp then prints a top level prompt. For example:
-> :a
> ]
Try restarting by entering

(nuprl)

If another crash follows immediately, the problem might be linked with the window system interface.
Enter " :aRETURN] ' to get back to the top level, and then enter

(reset) (nuprl)

On executing the (reset) function, all the Nuprl windows will close and (nuprl) will open up an
initial ML-Top-Loop and library window. Any proofs you were just working on will not have been
lost. Use the view function to open them up again. However, you might have lost the contents of
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the last term-editor window you were working in.

If still the system crashes but you can execute functions in the ML Top Loop, try dumping
any theories you haven’t previously saved, quit the Nuprl session, and start a new one (The quit
function is (quit). If you can’t even get the ML Top Loop running, the bug is very serious. Your
only choice is to quit the session, losing any work you’ve done and haven’t saved, and start a new
session.
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