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Abstract. We present a theorem proving environment for the devel-
opment of reliable and efficient group communication systems. Our ap-
proach makes methods of automated deduction applicable to the imple-
mentation of real-world systems by linking the ENSEMBLE group com-
munication toolkit to the NUPRL proof development system.

We present tools for importing ENSEMBLE’s code into NUPRL and ex-
porting it back into the programming environment. We discuss tech-
niques for reasoning about critical properties of ENSEMBLE as well as
verified strategies for reconfiguring the ENSEMBLE system in order to
improve its performance in concrete applications.

1 Introduction

Group communication via computer networks is used in a wide range of appli-
cations [3]. Over the past years the development of a secure and reliable com-
munications infrastructure has become increasingly important. But the current
networks are inadequate to support safety-critical applications because consid-
erable technical challenges have not been overcome yet.

First, there is the performance cost of modularity. To maximize clarity and
code re-use, systems are divided into clean modules, which are designed to op-
erate in a broad number of environments. But when modules are combined in
a restricted context, much of the code becomes useless or redundant, leading to
unnecessary large execution times. Secondly, there is the secure implementation
problem: designing and correctly implementing distributed systems is notori-
ously difficult [3,5]. While in principle it is possible to prove the correctness of
theoretical algorithms [19,18,1,20] it is very difficult to transform these ideal-
izations into implementations that can actually be used in real systems. Finally,
the formalization barrier prevents formal tools for checking software correctness
from being used to maximum benefit. These tools are computationally costly and
difficult to understand; even well understood type checking algorithms are often
viewed as expensive. Few of these tools are integrated into software development
environments, nor can they be flexibly and interactively invoked.

In this paper we address these problems by showing how to make methods of
automated deduction applicable to the implementation of a real-world system.
Our approach links ENSEMBLE [11], a flexible group communication toolkit, to
NUPRL [6], a proof system for mathematical reasoning about programs and for
rewriting them into equivalent, but more efficient ones.
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Because of the similarity between the core of OCAML [16], the implementation
language of ENSEMBLE, and Type Theory, the logical language of NUPRL, we
were able to translate the complete implementation of ENSEMBLE into NUPRL-
terms and to apply proof tactics and verified program transformations to the ac-
tual ENSEMBLE code. This makes it possible to verify critical system properties
and to improve its performance in particular applications. NUPRL thus becomes
a logical programming environment for ENSEMBLE whose capabilities go beyond
the usual type-checking and syntactical debugging capabilities of OcAML. It will
eventually provide the software development infrastructure and a design method-
ology for constructing reliable and efficient group communication systems.

In Section 2 we will present the architecture of the logical programming
environment, including a brief overview of ENSEMBLE and NUPRL. In Section 3
we describe the representation of the relevant subset of OCAML in Type Theory
as well as the tools for importing ENSEMBLE’s code into NUPRL and exporting
it back into the OCAML environment. In Section 4 we discuss techniques for
verifying system properties and in Section 5 we describe proof and rewrite tactics
for a verified reconfiguration of ENSEMBLE in a given application-specific context.

2 Architecture of the Logical Programming Environment

The ENSEMBLE toolkit is the third generation of a series of group communication
systems that aim at securing critical networked applications. The first system,
Isis [4], became one of the first widely adopted technologies in this area and
found its way into Stock Exchanges, Air Traffic Control Systems, and other
safety-critical applications. The architecture of HORUS [21], a modular redesign
of Isis, is based on stacking protocol layers, which can be combined almost
arbitrarily to match the needs of a particular application. Despite its flexibility,
HORUS is even faster than Isis, as the efficiency of its protocol stacks can be
improved by analyzing common sequences of operation and reconfiguring the
system code accordingly.

However, reconfiguring HORUS protocol stacks is difficult and error prone be-
cause its layers are written in C and they are too complex to reason about. Con-
cerns about the reliability of such a technology base for truly secure networked
applications led to the implementation of ENSEMBLE [11,12], which is based
on HORUS but coded almost entirely in the high-level programming language
OcaML [16], a member of the ML [9] language family with a clean semantics.
Due to the use of ML, ENSEMBLE turned out to be one of the most scalable and
portable, but also one of the fastest existing reliable multicast systems. One of
the main reasons for choosing OCAML, however, was to enable formal reason-
ing about ENSEMBLE’s code within a theorem proving environment and to use
deduction techniques for reconfiguring the system and verifying its properties.

Conceptually, each protocol stack is a finite IO-automaton, which could be
handled by propositional methods. But reasoning about the actual ENSEMBLE
code requires a theorem proving environment that is capable of expressing the
semantics of a real programming language and establishing a correspondence
between the implementation of a protocol stack and its formal model.
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Fig. 1. Verifying and reconfiguring communication systems in NUPRL

The NUPRL proof development system [6] is a framework for mathematical
reasoning about programs and secure program transformations. Proof strategies,
or tactics, can be tailored to follow the particular style of reasoning in distributed
systems. Tactics also produce (possibly partial) proof objects, which can be used
as documentation or reveal valuable debugging information if a verification did
not succeed. Performance improvements can be achieved by applying rewrite
tactics, which reconfigure the protocol stack for a particular application.

Because of its expressive formal calculus, NUPRL is well suited for building a
reasoning environment for ENSEMBLE. NUPRL’s Type Theory includes formal-
izations of the fundamental concepts of mathematics, programming, and data
types. It also contains a functional programming language that corresponds to
the core of ML. The NUPRL system supports interactive and semi-automatic
formal reasoning, conservative language extensions by user-defined concepts, the
evaluation of programs, and an extendable library of verified knowledge from var-
ious domains. These features make it possible to represent the code of ENSEMBLE
and its specifications as terms of NUPRL’s formal language and to use NUPRL
as a logical programming environment (LPE) for ENSEMBLE.

Figure 1 illustrates our methodology for developing efficient and secure com-
munication systems with the logical programming environment. In the first step
a well-structured ENSEMBLE protocol stack is be imported into the system,
i.e. converted into NUPRL-terms. We can then apply verification tactics to prove
critical protocol properties and system invariants. We can also apply optimiza-
tion tactics to create a fast-track reconfiguration of the protocol stack that is
guaranteed to have the same behavior as the original one. We can also prove
this fact formally and transform a verification of the original system into one of
the reconfigured stack. The latter is then exported back into the programming
environment and used as improved and secured part of the application system.

Using this methodology we are able to address the three above-mentioned
challenges. By building an environment that treats the actual ENSEMBLE code,
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we substantially lower the formalization barrier. By providing tactics for reason-
ing about system properties we address the secure implementation problem. The
performance costs of a protocol stack is drastically reduced by applying recon-
figuration strategies and exporting their results into the OCAML environment.
In the rest of this paper we shall discuss each of these aspects separately.

3 Embedding System Code into NUPRL

In order to enable formal reasoning about the code of an ENSEMBLE protocol
stack, we have to convert OCAML programs into terms of the logical language
of NUPRL that capture the semantics of these programs and vice versa. For
this purpose we have provided a type-theoretical semantics for the programming
language OCAML that is faithful with respect to the OCAML compiler and man-
ual [16]. We have limited our formalization to the subset of OCAML that is used
in the implementation of finite state-event systems like ENSEMBLE, i.e. the func-
tional subset with simple imperative features. By doing this we avoided having
to deal with aspects of the language that do not occur when reasoning about
protocol stacks but cause unnecessary complications in a rigorous formalization.

We have “implemented” this formalization using NUPRL’s definition mech-
anism: each OCAML language construct is represented by a new NUPRL term
that is defined to have the formal semantics of this construct. This abstraction
is coupled with a display form, which makes sure that the formal representation
has the same outer appearance as the original code. Thus a NUPRL term rep-
resents both the program text of an OCAML program and its formal semantics.
Furthermore, the well-formedness and soundness of the new terms with respect
to the rest of type theory is proved in separate theorem to make sure that such
issues can be handled automatically during verifications and reconfigurations.

We have also developed a formal programming logic for OCAML by describing
rules for reasoning about OCAML constructs and rules for symbolically evaluating
them. The rules were implemented as NUPRL tactics and are therefore correct
with respect to the type-theoretical semantics of OCAML.

Finally, we have created tools that convert OCAML programs into their for-
mal NUPRL representations and store them as objects of NUPRL’s library.
These tools are necessary to make the actual OCAML-code of an ENSEMBLE pro-
tocol stack available for formal reasoning within NUPRL and to keep track of
modifications in ENSEMBLE's implementation.

As a result, formal reasoning within NUPRL can now be performed at the
level of OCAML programs instead of type theory. All terms representing OCAML
programs are displayed in OCAML syntax and individual reasoning and program
transformation steps will always preserve the “OCAML-ness” of the terms they
are dealing with. This enables system experts who are not necessarily logicians
to formally reason about OCAML-programs without having to understand the
peculiarities of the underlying theorem proving environment.

In the rest of this section we briefly describe the formalization of OCAML and
the tools that translate between OCAML programs and their formal representa-
tions. For a full account we refer the reader to our technical report [14].
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3.1 Formalizing OBJECTIVE CAML in Type Theory

OcaML [16] is a strongly typed, (almost) functional language, which has been
extended with a module system and an object calculus. Its functional core is
similar to the language of type theory, but it has a different syntax and contains
many additional features.

Standard data types such as arrays, records, queues, etc. and their operations
are predefined in OCAML but have to be represented by more fundamental con-
structs in type theory. In most cases, the formalization is straightforward. Arrays
over some type T, for instance, are represented by pairs (Ig,a) where lg€IN is
the array’s length and a:IN—T the component selector function. Records are
represented by dependent functions and variant records by dependent products.
But there are also language constructs whose representations are more complex.

Variable-sized Expressions. In contrast to type-theory, which requires terms
to have a fixed number of subterms, OCAML allows expressions with arbitrarily
many components. {l1=vy;..;l,=v,}, for instance, denotes a record that has
the value v; at field ;. This expression can be represented by a function r that
on input /; yields the value v;, but r can be described only through an iterated
application of several NUPRL-abstractions: a representation of the empty record
{} by the constant function Al. () and a representation for record extension by a
new field l,,11=v,41. Appropriate display forms make sure that a term built from
these abstractions is always displayed like the corresponding OCAML-record.

Thus formally OCAML language constructs are not associated with individual
NUPRL-abstractions but with term-generators, i.e. meta-level programs that
construct a NUPRL-term out of one or more abstractions.

Pattern Matching. A convenient feature of OCAML is the support of pat-
tern matching in local abstractions, function definitions, and case-expressions.
match expr with p;->t;...p >t , for instance, subsequently matches the
expression ezpr against the patterns p;...p, . If matching succeeds with pattern
p, then the free variables of p, will be instantiated in ¢, and ¢, will be evaluated.

Although a pattern looks like a conventional expression, it has an entirely
different semantics. Computationally, a pattern p can be viewed as a matching
function (or matcher) that takes an expression erpr and a target ¢, analyzes
the structure of ezpr, and returns an instance of ¢ with the free variables of p
instantiated. A pattern z, for instance, contains the free variable z and matches
against any expression. Applying the matcher to expr and ¢ results in ¢[expr/z].

Since most patterns are constructed from other patterns we also need mecha-
nisms for composing matchers. The paired pattern (p;,ps), for instance, expects
to be matched against a pair (e1,es). The term e; is handed together with ¢ to
the matcher p; while ey and the result of this matching is given to ps.

Finally, we have to deal with the fact that matching may fail. Therefore, a
matcher returns both a modified target expression and a boolean value.

Taking these aspects into account we have implemented a collection of ab-
stractions and display forms for each pattern construct. The abstractions define
the term structure and the semantics of a matcher. The display form describes
its outer appearance and makes matcher terms look like the original pattern.
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Ezample 1. The abstraction for paired patterns introduces a (higher-order) term
with the name Product__ Match Pair and two formal subterms, the submatchers
p1 and po, which are separated by a semicolon. The right hand side of the
abstraction formalizes the intuition of paired matchers. A display form causes
the matcher to appear as simple pair.

Product___Match Pair{}(.pi;.p2)

= Jdexpr,t. let ej,es = expr in
let b,t’> = (p1 e targ) in
if b then (p2 e2 t’) else (false, t’)
p1,p2 = Product__Match Pair{}(.pi;.p2)

Imperative Features. For the sake of efficiency OCAML supports imperative
features such as assignments, compound statements, and loops, while the prim-
itives of type theory are completely functional. But for formal reasoning about
OCAML-programs, a representation of imperative features based on a copy se-
mantics is sufficient. Nevertheless, a complete formalization of imperative be-
havior would require a general model for managing reference variables.
Fortunately, ENSEMBLE’s architecture is essentially a finite state-event sys-
tem. Imperative features only affect the state of a protocol layer and the queue
of events that links two layers. Thus we can use a simpler model and represent
imperative assignments by functions that modify these two variables. Compound
statements and loops are represented by function composition and recursion.

Modules and Object Declarations. OcaMmL-declarations of user-defined
types and functions introduce a name for a new object and bind it to a given
expression. Technically, declarations are instructions for the programming en-
vironment. In NUPRL they correspond to meta-level programs that add new
abstractions and display forms to the library. These object-generators also deal
with name space management, references to other user-defined objectd, over-
loading, and similar issues related to the environment of a program.

Similarly, OCAML modules can be considered to be a means for structuring
the code. This allows, for instance, using the same name for different functions in
different modules and supports a clear and uniform presentation of the protocol
layers of ENSEMBLE. In NUPRL modules have to be mapped onto the flat name
space of the library. Module declarations thus affect how object-generators de-
termine the names of generated objects or of objects referred to by an identifier.

3.2 Conversion Algorithms

Given the formal embedding of OCAML the methodology for importing and ex-
porting system code into NUPRL is straightforward. We have to analyze the
syntax of OCAML-programs and create the corresponding term- and object gen-
erators. These generators will create appropriate terms and store all declared
functions and types as new abstractions in NUPRL’s library. In order to ensure
faithfulness wrt. the OCAML programming environment we chose the CAMLP4
parser-preprocessor [7], an isolated version of the original OCAML-parser, as a
tool for analyzing program text. CAMLP4 generates an abstract syntax tree and
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Fig. 2. Translating between OcAML and NUPRL: general methodology

then calls an output module for further processing (e.g. pretty-printing or dump-
ing the binary). We have developed an output module that converts the abstract
syntax tree it into “intermediate code” consisting of term and object generators.
The module generates pieces of text for each node of the syntax tree, distinguish-
ing the various kinds of identifiers, expressions, patterns, types, signature items,
and module expressions according to the OCAML specification [7, Appendix A].

Since a parser is restricted to a syntactical analysis of a single text file it
cannot solve problems that arise when linking the code of several modules. Name
resolution (dealing with modules), determining the role of identifiers (variable
or reference to user-defined object), and overloading (detecting the intended
operator via type inference) therefore had to be addressed with meta-level object
generators (see Section 4 of our technical report [14] for details).

Translating formal representations of protocol layers back into OCAML source
code is easy, because their display is already genuine OCAML code. Since NUPRL
already provides a mechanism for printing libraries and proofs we only had to
write a function that selects the objects to be printed. The resulting program
text can be executed in the OCAML environment without further modifications.

4 Verification of System Properties

The security of distributed systems is usually described by a few critical system
properties such as agreement, total message ordering, safe encryption etc., which
are achieved by using specific protocols. Group communication systems built
with the ENSEMBLE toolkit consist of stacks of 20-30 small protocols that are
composed according to the needs of the application. Since there are thousands of
different application systems that can be constructed this way it is not possible
to give an a priori verification of the ENSEMBLE system as such.

Instead, we have to verify critical properties of individual protocol layers and
develop proof tactics that derive properties of a full protocol stack from those
of individual layers. We also have to state and prove global system invariants
(e.g. independence of layer properties). These Invariants which must hold for all
possible protocol stacks and we have to provide tools that check them whenever
the system is modified.
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One of the advantages of ENSEMBLE’s implementation, as far as formal rea-
soning is concerned, is the simple code structure of protocol layers. Since the
protocols are essentially finite state-event machines, the OCAML code contains
only nested function applications, sequencing of statements, and simple loops.
Correspondingly, many properties of a protocol layer can be proved by straight-
forward applications of a few fundamental deductive techniques.

— Function evaluation is used whenever a newly defined layer function needs
to be analyzed. Similarly, the definitions of newly introduced concepts for
expressing program properties have to be unfolded.

— Lemma application occurs when reasoning about the properties of operations

used in the definition of new functions or concepts. This may involve back-
ward (and forward) chaining over implications and equality substitutions,
depending on which part of the lemma can be used.
The only difficulty is finding appropriate lemmata in a short amount of
time. Efficient lemma application requires a well-organized formal database
containing verified lemmata about the properties of predefined functions. A
strong modularization of this database is necessary to restrict the search
space. We are currently developing techniques for constructing this database
step by step as new functions and modules are imported into NUPRL.

— Proof methods known from first-order theorem proving are used to solve
proof subgoals that are conceptually simple but tedious. Similarly simple
induction techniques are needed for reasoning about loops.

Usually the syntactical structure of the property to be proved determines how
these techniques are to be applied. This makes it possible to write tactics that
automate the verification process. To illustrate this process we give an example
verification of the central property of Ensemble’s Elect protocol layer.

Ezample 2. The purpose of the Elect layer is to elect a coordinator for groups
of processes that do not suspect each other to have failed. For this, each process
maintains a list of suspected processes and its own rank in the group. The former
will be updated in each cycle, but processes that have been suspected once will
remain suspected. A process elects itself as coordinator if all other processes of
lower rank are suspected. This guarantees that each nonempty subgroup of correct
processes will always have exactly one coordinator. The election algorithm can
be implemented by the following piece of OCAML-code.!

type state = { suspects : bool list ; rank : int }

let handler (state,suspects) =
let suspects = map2 (or) suspects state.suspects in
let elect = (min_rank suspects) >= state.rank in
let state { rank = state.rank; suspects = suspects } in

(state,elect)

To formalize the property we want to verify, we describe a group G of processes
by a list of states. Each member m is uniquely identified by its position, or rank, in

! map2 applies a function with two arguments to two lists. min_rank computes the
smallest rank of an entry false in a boolean list.

324



this list, which is assumed to be identical with the value of the rank component of
G[m]. The suspects component and each list of new suspects are list of boolean
values of exactly the same size as the group. They indicate which group member
is suspected to have failed. We introduce two formal abbreviations.

Vm:{1..1G|}. |G[m].suspects|=1G| A G[m].rank=m
Vm:{1..1G|}. |suspects[m]|=|G|

G is_well formed =
suspects fits G =
The subgroup SUB of correct processes can be characterized as the set of processes
that do not suspect each other but suspect every outsider process.

SUB agrees = Vm,m’:{1..|Gl}. meSUB = m’eSUB < m’ unsuspected by m
m’ unsuspected by m = suspects[m][m’]=false A G[m].suspects[m’]=false
A member m elects itself as new coordinator, if the elect-component computed

by its handler is true. We define m elects_itself as shorthand for

let (state,elect) = handler(G[m],suspects[m]) in elect=true

The property that each nonempty subgroup of correct processes will always have
exactly one coordinator can thus be formally sspecified as follows.
VG: state list. G is_well formed =

Vsuspects: IB list list. suspects fits G =
VSUB: {1..|G|} list. SUB agrees =

Jim:{1..1Gl}. meSUB A m elects_itself

A proof of this property decomposes this specification and then continues as
shown in Figure 3 (we used descriptions of proof tactics instead of their NUPRL
names). Except for the selection of min(G) in the first step, it can be constructed
automatically by the above-mentioned standard techniques, provided that the
following lemmata are present in the formal database.

(1) VL: B 1list. L[min_rank L]=false
(2) VL: B 1list. Vj:{0..ILI7}. L[jl=false = minrank L < j
(3) VL1,L2:B 1list. |L1|=|L2| =
Vi:{0..|L1|~}. (map2 or L1 L2)[i]l=false < Li[i]=false A L2[i]=false

(4) VL:Z list.Vi:Z. i=min(L) <& i€l A (Vj:Z. jeL = i<j)

The above example is only an illustration of the tasks involved in the veri-
fication of a protocol stack. The actual ENSEMBLE implementation of the Elect
protocol layer also contains code for handling various error situations and is
about 100 lines long. Because of this, a complete formal specification of protocol
layers is rather complex and more difficult to verify. We are currently elaborat-
ing formal specifications of ENSEMBLE’s protocol layers and the code for layer
composition using I/O-automata as in [17]. We intend to use timed automata as
a means for specifying synchronization and liveness properties.

The development of verification tactics for protocol stacks is also still in its
beginning phase. So far we have developed and implemented a formal program-
ming logic for the embedded subset of OcAML (see Section 4 of our technical
report [14] for details) and experimented with small examples like the above.
We have also implemented a type-inference algorithm for the embedded subset
of OcAML and are currently extending it to provide a more detailed analysis of
programs like checking array bounds, division errors, boolean annotations, etc.
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1.-3. G: state list, suspects: IB list list, SUB: {1..|G|} list
4.-6.. G is_well_formed, suspects fits G, SUB agrees

F 3im:{1..1Gl}. meSUB A m elects_itself

BY unfold the definition of 31 and choose m = min(SUB)

F min(SUB) € SUB
BY Lemma (4)

F min(SUB) elects_itself

1‘3‘{ unfold elects_itself, evaluate handler, and convert >=
F min rank (map2 or suspects[min(SUB)]) (G[min(SUB)].suspects)) > G[min(SUB)].rank
1‘3‘{ unfold is_well_formed and substitute G[min(SUB)].rank=min(SUB)

F min_rank (map2 or ... ) > min(SUB)
1‘3Y Lemma (4)

- min_rank (map2 or ... ) € SUB

BY unfold agrees and backward reasoning over hypothesis 6

F min(SUB) € SUB
BY Lemma (4)

- min_rank (map2 or ... ) unsuspected_by min(SUB)
BY unfold unsuspected_by and apply Lemma (3)

F (map2 or ... )[min_rank (map2 or ... )] = false
BY Lemma (1)

7.-9. m:{1..1Gl}, meSUB, m elects_itself
- m=min (SUB)

Y Lemma (4)
- m e SUB
BY hypothesis 8
10.-11. j:Z, je€SUB
F n<j
BY unfold elects_itself, evaluate handler, and convert >=
. min.rank (map2 or (suspects[m]) (G[m].suspects)) > m

n<j
BY transitivity over hypothesis 9

}— min_rank(map or (suspects[m]) (G[m].suspects)) < j
fY Lemma (2)

(map2 or (suspects[m]) (G[m].suspects))[j] = false
BY apply Lemma (3) and fold unsuspected_by

j unsuspected_by m
BY unfold agrees and backward reasoning over hypothesis 6

Fig. 3. Top-down verification of the Elect protocol layer

Since the formal specifications of individual layers are not very likely to
change, it is sufficient to verify them interactively with tactic support. Formal
reasoning about application systems can then be done solely on the basis of
these formal specifications instead of the real code, which drastically simplifies
the reasoning process. We believe that a formalization of the style of reasoning
used in Lynch’s book [17] may lead to successful verification tactics.

5 Fast-Track Reconfiguration of Protocol Stacks

For the sake of flexibility, ENSEMBLE’s protocol layers can be combined almost
arbitrarily. Few assumptions are made about adjacent layers and all types of
messages (including errors) must be handled within the layer. This approach
is safe but it leads to a great amount of redundancy. In most cases a message
is simply sent or broadcast and it passes straight through the protocol stack,
modifying only a few layer states. Each layer adds a header to the message to
indicate how the corresponding receiver layer has to be activated (see Figure 4).
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Fig. 4. ENSEMBLE architecture: Protocol layers are linked by FIFO event queues

By reconfiguring a layer stack one can achieve a more efficient treatment of
these normal cases. For this purpose one has to analyze common sequences of
operations, identifying the structure of standard messages and the normal sta-
tus of a layer’s state. Under these conditions the code of the protocol stack can
be improved drastically. The result describes a fast-track through the protocol
stack that can be executed whenever an incoming message and the current state
satisfy the conditions. Experiments have shown that a speedup of factor 30-50
can be achieved by function inlining, symbolic code evaluation, dead code elimi-
nation, removing the communication overhead between layers, and compressing
the headers of standard messages before sending them over the net. Fast-track
reconfigurations by hand, however, are time consuming and have a high risk of
error because of the code size of typical applications. Without formal support,
a reconfiguration of an application system would be infeasible.

We have developed a small set of general tactics that automatically detect
pieces of code that can be optimized and rewrite them accordingly. These tactics
include function inlining, symbolic evaluation, and knowledge-based simplifica-
tion. They are based on the derived program evaluation rules mentioned in Sec-
tion 3 (see also Section 4 of our technical report [14]) and on conditional rewrite
rules, which are implemented via substitution and lemma application.

These tactics are successful for a reconfiguration of individual protocol layers.
But for the reconfiguration of protocol stacks containing thousands of lines of
code they turnead out to be not efficient enough since too much search is involved
in the process. Therefore we have developed specialized reconfiguration tactics
that avoid search almost completely because by following the code structure of
ENSEMBLE’s protocol layers and the function for layer composition.

Reconfiguration of protocol layers. Besides type and module declarations
all ENSEMBLE protocol layers essentially consists of two functions. The function
init initializes the layer’s state according to a global view state vs and local
information 1s. The function hdlrs describes how the layer’s state is affected
when an event is received and which events will be sent out to adjacent layers.
Instead of mentioning event queues explicitly, hdlrs transforms the event han-
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dlers of the stacks above and below the layer. This technique makes it possible to
convert a layer 1 into a functional or an imperative version without modifying
its code.
The purpose of a reconfiguration is to optimize the event handler of a protocol
stack. A reconfiguration of an individual protocol layer 1 therefore begins with
let (init,hdlr) = convert 1 (1s, vs) in hdlr(s;,event)

where init describes the initial state, hdlr event handler, and event is either an
up or downgoing event of the form UpM(ev,msg) or DnM(ev,msg). Assumptions
about the “normal case” characterize the type of ev (send, broadcast, etc.), the
structure of a header in msg, and the contents of the layer’s state s;.

A reconfiguration first evaluates convert, which has a fixed implementation,
and unfolds init and hdlrs. It then evaluates all let-abstractions occurring
in hdlr and finally analyzes the outer structure of the event. All these steps
could be performed by our general evaluation strategy (a tactic called Red) but
a specialized tactic RedLayerStructure can perform them much more efficiently,
because the exact order of reductions is fixed.

Afterwards, we have to make use of the assumptions in order to optimize
the code further. Since these are usually expressed as equalities, we can use
substitution and then reduce the piece of code that was affected. Again, there is
a specialized tactic UseHyps for this purpose.

By combining these tactics a reconfiguration of a protocol layer can be per-
formed almost automatically. We have successfully used them in the reconfigu-
ration of several ENSEMBLE layers for various standard situations. In many cases
a layer consisting of 300-500 lines of code is reduced to a simple update of the
state and a single event that is passed to the next layer.

Verifying a reconfiguration. A fast-track reconfiguration in NUPRL is more
than just a syntactical transformation of program code. Since it is based on sub-
stitution and evaluation mechanisms we know that under the given assumptions
a reconfigured program must be equivalent to the original one. But we can also
prove this fact formally after a reconfiguration has been finished. In fact, we
get the proof of equivalence almost for free, since all NUPRL substitutions and
evaluations also correspond to proof rules in NUPRL.

We have written a tactic that generates the statement of the equivalence
theorem from the assumptions, the starting point, and the final result of the re-
configuration and then proves it correct. For the latter, it considers the trace of
the reconfiguration as a proof plan and transforms each reconfiguration step into
the corresponding proof rule and its parameters. This tactic is completely auto-
mated — even in cases where the reconfiguration required some user interaction
— and is guaranteed to succeed.

An interesting side effect of this technique is that it also allows us to bypass
NUPRL’s basic inference system during a reconfiguration. Since the correctness
of the reconfiguration will be verified anyway, we can simply transform OCAML-
programs by meta-level operations, which avoids the overhead of checking each
transformation step correct. Experiments have shown that this speeds up the
reconfiguration process by a factor of 5 and more since the verification can be
executed later in a separate background process.
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Reconfiguring layer composition. While the reconfiguration of individual
layers is mostly straightforward it becomes more complex when layers are com-
posed. In this case the new state is simply a tuple of individual layer states.
The composed event handler not only has to deal with outgoing events but also
with the events that pass between the composed layers. Since (generated) events
may also bounce between the composed layers the function for layer composition
(compose) must use unrestricted recursion.

Correspondingly, a reconfiguration of composed layers has to proceed recur-
sively as well while it traces the path of standard events through the composed
layers. For instance, upgoing events are first be passed to the lower layer. After
the code has been reconfigured accordingly, all emitted downgoing events are
stored in the event queue while upgoing events will be passed to the upper layer.
Emitted up-events are added to the queue and down-events are passed back into
the lower layer. This process continues until all events have left the composed
layers. It has been automated by a specialized tactic for reconfiguring composed
layers, which performs these steps in an efficient order. Obviously, it only ‘suc-
ceeds’ if the assumptions about incoming event do in fact allow a simplification
of the code, since otherwise the generated code may become much bigger.

Reconfiguration of protocol stacks. Despite the use of specialized reconfig-
uration tactics that take into account the specific code structure of ENSEMBLE
the performance of the reconfiguration tools does not scale up very well. Due to
the size of the code we have to deal with extremely large terms, which is par-
ticularly problematic if user interaction is necessary. Tracing events through the
code of a full application protocol stack is extremely time consuming as we have
to rely on symbolic evaluation because we only know the structure of the event.
Reconfiguration in a higher-order proof environment, however, is not re-
stricted to elementary program transformations. In most cases, the result of
reconfiguring a protocol stack under a given set of assumptions can easily be
derived from the reconfiguration results for its individual layers. We only have
to compose these results according to our knowledge about layer composition.
Formally, we can do this by establishing theorems about the reconfiguration
of individual protocol layers and the result of composing reconfigured layers.
These formal theorems then serve as derived inference rules on a much higher
level of abstraction. They compose arbitrary protocol layers in a single inference
step where a tactic-based reconfiguration would have to execute thousands of
elementary steps. This not only leads to a better performance of the reconfigu-
ration process but also a much clearer style of reasoning. Furthermore, system
updates can be handled much easier: the modification of a layer’s code usually
only requires reproving the reconfiguration theorems for this particular layer
while the reconfiguration of the stack will remain completely unaffected.
Figure 5 presents a reconfiguration theorem for composing fast-tracks for
upgoing events. It deals with the very common case of linear traces where an
event passes through the stack without generating additional events. In this case
each layer Top and Bot yields a queue consisting of a single up-event and the
composition of both does the obvious. While the statement of this theorem is
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VTop,Bot, 1s,vs, msg,msg;,msga, sb,sg, st,s;
let (init,hdlr) = Bot (1s,vs) in hdlr (s,, UpM(ev,msg)) (sg, [:UpM(ev,msg1):1)
A let (init,hdlr) = Top (ls,vs) in hdlr (s;, UpM(ev,msgi)) (s}, [:UpM(ev,msgs):1)
= let (init,hdlr) = (compose Top Bot) (1s,vs) in hdlr ((sp,s:), UpM(ev,msg))
= ((sg,s;), [:UpM(ev,msg2):1)

Fig. 5. Reconfiguration theorem for linear up-traces

simple, its proof is rather complex as we have to reason about the actual code
of ENSEMBLE’s compose function and reason about the result of all the steps
that would usually be executed during a reconfiguration. Thus by proving this
theorem we remove the deductive burden from the reconfiguration process itself.?
Reconfiguration theorems for composing fast-tracks, coupled with reconfigu-
ration theorems for individual protocol layers, lead to a reconfiguration technique
that scales up extremely well. We only have to apply the appropriate theorems
step-by-step and receive the reconfigured code for the complete stack in linear
time with respect to the number of layers that have to be passed by events.
We are currently developing a database of standard reconfigurations for all
protocol layers, a series of composition theorems for linear and simple non-linear
traces, and a reconfiguration tactic that automatically selects and applies these
theorems. We have used this tactic in an example reconfiguration of a simple
protocol stack consisting of the four layers Bottom, Mnak, Pt2pt, and Frag with
total code size of about 1200 lines. Tracing broadcast events under standard
conditions yields only two lines of code, which update the state of Mnak and
pass the event to the next layer after removing the corresponding four headers.

6 Conclusion

We have presented a logical programming environment for the development of
reliable and efficient group communication systems. Our approach includes algo-
rithms for importing system code into the NUPRL proof development system,
semi-automatic reasoning tools for verifying and optimizing this code within the
proof environment, and tools for exporting the results back into the program-
ming environment. It is based on a formalization of a subset of the programming
language OCAML for which we have developed a type-theoretical semantics.
Recent work on the specification and verification of timed automata [17,1],
fault-tolerant systems [20], and protocol stacks for group communication sys-
tems [8] has demonstrated that formal reasoning about complex distributed al-
gorithms is feasible. Our approach, however, is the first to make the code of a
real-world communication system available for formal reasoning and to combine
both verification and code reconfiguration within a single formal framework.
While the import/export mechanisms have already been completed, the de-
gree of automation of our tools for verifying and reconfiguring protocol stacks
still has to be improved. For this purpose we will integrate additional tools from
the field of automated deduction, such as an extended typechecking algorithm

2 This methodology has already been used successfully for program synthesis [13,2].
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[10], a proof procedure for first-order logic [15], and a proof planner for induc-
tive proofs [2] into the logical programming environment. Furthermore, we are
extending our formal database by verified theorems about major reconfiguration
and verification steps, which we can then use as derived inference rules. We aim
at a modularization of the formal database in order to speed up the search for
applicable lemmas. We are also developing a mechanism that automatically adds
header compression to a reconfigured stack to further improve the efficiency of
the generated code. We intend to apply our reconfiguration and verification tools
to a running application system in order to improve its efficiency while hardening
its security at the same time.

Although it may take a few years until our tools are mature, we are confident
that they will lead to a new design paradigm for distributed systems that yield
the high degree of assurance required in many important applications.
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