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Abstract

For more than a decade, we have been working on specifying, verifying, and synthesizing
asynchronous distributed protocols using the Nuprl proof assistant. Only recently we have
been able to do so for complicated protocols such as Paxos. This has been made possible
thanks to the level of abstraction of our specification language called the Logic of Events
(LoE). This paper discusses our main automation tool, namely our Inductive Logical Forms
(ILFs), which are first order formulas that characterize the responses of a system to events
in terms of observations made at causally prior events.

Nuprl’s type theory. The Nuprl proof assistant [12, 3] implements a type theory called Construc-

tive Type Theory (CTT), which is an extensional dependent type theory à la Martin-Löf. It
is based on an untyped functional programming language à la Curry. Nuprl has a rich type
theory including dependent product and sum types, identity (or equality) types, a hierarchy of
universes, disjoint union types, W types, quotient types [14], set types, union and (dependent)
intersection types [15, 22], image types [25], PER types [4], approximation and computational
equivalence types [19, 28], and partial types [16].

Type checking is undecidable but in practice this is mitigated by type inference and checking
heuristics implemented as tactics. Moreover, to avoid proving well-formedness conditions (i.e.,
doing type checking) altogether, we often do untyped reasoning using Howe’s computational
equivalence relation (an observational congruence, which we write as ∼) [19, 28]. For example,
we can prove that for all terms f and t (t need not be a list), map(f , t) @ nil ∼ map(f , t). We
can then rewrite map(f , t) @ nil into map(f , t) anywhere in a sequent without having to prove
any well-formedness condition.

Allen developed a semantics for Nuprl where types are defined as partial equivalence relations
(PERs) on closed terms [2, 1, 16]. We have implemented this semantics in Coq and verified a
large number of Nuprl’s inference rules [6, 7] (Nuprl’s consistency follows from the fact that its
inference rules are valid w.r.t. Allen’s PER semantics and that False is not inhabited).

We have also recently turned Nuprl into a fully intuitionistic theory following Brouwer’s
principles. Using our Coq framework, we have proved Brouwer’s continuity principle for num-
bers [27]. Following Dummett’s “standard” classical proof [17, pp.55], we have also proved (in
Prop and using classical axioms) the truth of several bar induction rules (see, e.g., [21, 11, 31]),
such as bar induction on decidable bars for free choice sequences of numbers [26].

By default the Nuprl system is distributed and runs in the cloud. Alternatively, Nuprl can
run locally using one of our virtual machines available at http://www.nuprl.org/vms/. Nuprl is
composed of several processes: database and library processes to store and access definitions,
lemmas, and proofs; refiner processes to apply inference rules; and editor processes, which
are user interfaces. It also allows several users to simultaneously edit a proof, and users to
simultaneously refine several subgoals in a proof.

Nuprl led to other similar proof assistants such as MetaPRL [18] and JonPRL [20]. It has
been used over the years to both formalize mathematical results and develop verified software.
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For example, we have recently proved a completeness result of intuitionistic first-order logic [13],
and we have built distributed systems including a verified ordered broadcast service [33, 30, 32].

The Logic of Events. To specify, verify, and synthesize asynchronous distributed protocols, we
use two languages, both implemented in Nuprl: (1) a high-level specification language called
the Logic of Events (LoE) [8, 10] to specify and reason about the information flow of distributed
program runs; and (2) a low-level programming language, the General Process Model (GPM) [9],
to implement these information flows.

LoE, related to Lamport’s notion of causal order [23], was developed to reason about events
occurring in the execution of a distributed system, where an event is an abstract entity cor-
responding to the receipt of a message; the message is called the primitive information of the
event. An event happens at a specific point in space/time. The space coordinate of an event is
called its location, and the time coordinate is given by a well-founded causal ordering on events
that totally orders all events at the same location. Using LoE one can describe systems in terms
of the causal relations among events and (ultimately) their primitive information. LoE has been
used among other things to verify consensus protocols [33] and cyber-physical systems [5].

We have also developed a programming language called EventML, to automatically generate
both LoE specifications and GPM programs from EventML specifications [29]. Once we have
extracted the semantic meaning of an EventML specification in terms of a LoE formula F and
a GPM program P , we automatically prove that P satisfies F . It remains to interactively prove
that the LoE formula F satisfies the desired correctness properties.

To reason about a protocol in LoE, we reason about its possible runs. An event ordering is
an abstract representation of one run of a distributed system; it provides a formal definition of
a message sequence diagram as used by systems designers. It is a structure consisting of: (1) a
set of events; (2) a function loc that associates a location with each event; (3) a function info

that associates primitive information with each event; and (4) a well-founded causal ordering

relation, <, on events [23]. We express system properties as predicates on event orderings. A
system satisfies such a property if every execution satisfies the predicate.

L1 L2
`̀ echo`̀

•
e1 `̀ forward`̀

• e2
`̀ ackn`̀

•e3

The message sequence diagram on the right depicts a
simple event ordering with events e1 and e3 happening
at location L1, and e2 at location L2. Event e1 happens
causally before e2, which happens causally before e3. We
write e1 < e2, e2 < e3, and e1 <loc e3.

In LoE, we specify systems by defining and combining event observers [8] (which can be
regarded as the combinations of event recognizers and event handlers). An event observer is
a function that assigns to any event ordering eo and event e in that event ordering eo, an
unordered bag of outputs observed (or produced) at e. For example, the following observer
recognizes every event and observes its location: λeo.λe.{loc(e)}. We also have primitive

observers to, e.g., run two processes in parallel or to build state machines.
We reason about event observers in terms of the event observer relation, which relates

events, observers, and observations: we say that the observer X observes v at event e (in an
event ordering eo), and write v ∈ X (e), if v is a member of the bag (X eo e).

Formally verifying distributed protocols is not trivial and can be time consuming. Our main
automation tool to assist us in this task is called an Inductive Logical Form (ILF).

Inductive Logical Forms. An ILF is a first order formula that characterizes the responses of
a system to events in terms of observations made at causally prior events. For example, in
Paxos [24, 34]—a state machine replication protocol, if a leader L decides that slot n is to be
filled with command c, then that means that c was proposed to the leader L at an earlier event.

ILFs are automatically generated from observers using logical simplifications, and charac-
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terizations of the LoE combinators. For example, one of the simplest but subtle such charac-
terizations is the one for our parallel combinator “ || ”, which allows one to run two processes
in parallel: v ∈ X ||Y (e) ⇐⇒ ↓(v ∈ X (e) ∨ v ∈ Y (e)). This says that v is produced by
X ||Y iff it is produced by either of its components (see [29] for more details).

Given an observer X , i.e. an LoE specification, we wrote a program that starts with a
formula of the form v ∈ X (e), and keeps on rewriting it using equivalences such as the one
presented above (and also applies various logical simplifications), to finally generate a formula
of the form v ∈ X (e)⇐⇒ C , where C is a complete declarative characterization of X ’s outputs.
Finally, we have built a proof tactic that automatically proves such double implications.

Rewriting using such formulas we can easily trace back the outputs of a distributed system
to the states of its state machines and to its inputs. It turns out that when proving safety
properties of distributed systems, much of the effort is spent tracing back outputs to inputs.
ILFs helped us automate this reasoning process.
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