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Abstract

Distributed programs are known to be extremely difficult to imple-
ment, test, verify, and maintain. This is due in part to the large num-
ber of possible unforeseen interactions among components, and to
the difficulty of precisely specifying what the programs should ac-
complish in a formal language that is intuitively clear to the pro-
grammers. We discuss here a methodology that has proven itself in
building a state of the art implementation of Multi-Paxos and other
distributed protocols used in a deployed database system. This ar-
ticle focuses on the basic ideas of formal EventML programming
illustrated by implementing a fault-tolerant consensus protocol and
showing how we prove its safety properties with the Nuprl proof
assistant.

1. Introduction

Specification, Verification, and Protocol Synthesis. Formal meth-
ods tools such as type checkers, SMT solvers, model checkers,
theorem provers, etc., are more and more widely used to develop
reliable concurrent systems. Many programming languages with
rich type systems (featuring, e.g., dependent, refinement, or ses-
sion types) have been developed to specify, enforce, and ver-
ify both correctness and security properties of concurrent pro-
grams [7, 18, 19, 30, 33, 38] and system components in gen-
eral [24, 37]. These expressive type systems are the basis for spec-
ification languages that enable protocol verification and synthe-
sis [6, 11].

We have invested in this line of formal work for several years
since there is good evidence that appropriate formal methods can
substantially improve the reliability of distributed protocols and
that such methods are more necessary for this kind of programming
because of its intrinsic complexity. We are also fascinated by this
apparent intrinsic complexity—is it real and if so, what are the
root causes and appropriate remedies? We think that attributes
of specification and proof process are revealing answers to these
questions, and we will touch on the possibilities as we proceed.

[Copyright notice will appear here once ’preprint’ option is removed.]

We use constructive logic because it supports provably cor-
rect code synthesis from proofs and because distributed comput-
ing has aspects which are essentially constructive in that the agents
must have concrete information to make decisions, and the pro-
gram specifications are about how to acquire that information. We
say “provably correct” because program correctness is guaranteed
by machine checked proofs that these programs satisfy desired cor-
rectness properties.

One reason that distributed systems are especially difficult to
code correctly and maintain is that they are difficult to reason
about. This does not become clear from model checking alone nor
from testing because those methods do not expose the reasoning
need to make definitive arguments. Once the right proof methods
are developed, we can see the complexity of the reasoning task
exposed in the size of the proof and the tight connections between
its components.

We also see why formal methods tools can be a great help
to programmers to guarantee code correctness, and even though
verifying systems correctness using proof assistants is more time
consuming, it does provide very strong correctness guarantees and
insights into the programming task. Those insights have led us
to the event combinators we describe here. Moreover as Klein et
al. write: “Complete formal verification is the only known way to
guarantee that a system is free of programming errors” [24].

We use the EventML language to specify protocols. EventML
works synergistically with the Nuprl proof assistant [4, 14, 25]
which is closely related to the Coq [1, 5] proof assistant. Nuprl
is a programing/logical environment based on Constructive Type
Theory (CTT) [4, 14] and on Classic ML [21], that allows one to
prove mathematical results but also to program and prove proper-
ties about these programs.

EventML. EventML is a domain-specific ML-like functional
programming language for distributed protocols based on asyn-
chronous message passing. It allows programming distributed pro-
grams in an event-based style, hence the name “EventML”. The
language provides combinators that allow programmers to imple-
ment what can be regarded as event recognizers and event handlers.
EventML is based on two formal models of distributed computing
implemented in Nuprl: the Logic of Events (LoE) [8, 10, 12] to
specify and reason about the information flow of distributed pro-
grams, as well as a General Process Model (GPM) [9] to implement
these information flows. The semantic meaning of an EventML
program can be expressed both by a LoE formula and by a GPM
program. This dualism provides a workable balance between pro-
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gramming and formal reasoning. Because of this dualism we also
refer to EventML programs as “constructive specifications”.

Currently, EventML docks with the Nuprl logical programming
environment. Since every EventML type is a Nuprl type, docking
means that any Nuprl object whose type is an EventML type
can be imported into an EventML program. This includes not
only operations from Nuprl’s mathematical library, but also Nuprl
objects denoting executable processes.

In the other direction, programmers can specify a protocol in
EventML and upload it to a theorem prover to verify its properties.
Nuprl is well suited to reason about distributed systems because
of its constructive logic, its expressiveness, and its large library of
proven facts about verified programs and about the Logic of Events.
But, in principle, EventML can connect to any prover that imple-
ments the Logic of Events and our General Process Model [9].

The diagram presented below summarizes the interaction be-
tween EventML and Nuprl. The advantage of using EventML is
that it greatly facilitates the developing, testing, and debugging of
distributed protocols. Once we have extracted the semantic mean-
ing of an EventML specification in terms of a LoE formula and
GPM program, we automatically prove that the program satisfies
the formula. It then remains to interactively prove that the LoE for-
mula satisfies the desired correctness properties.

EventML | Nuprl

| high-level specification |

interactive proof

)I Logic of Events specification |

EventML specification N .
automatic proof
\I General Process Model program |

Our Computation Model. EventML’s computation model is
based on the General Process Model [9]. A process that takes in-
puts of type A, and outputs elements of type B, is an element of
the following co-recursive type (the definition of the Nuprl corec
type is outside the scope of this paper):

Proc = corec(AP.(A — P X Bag(B)) + Unit)

Unit is a singleton type and + is the disjoint union type. Intuitively,
this definition of Proc says that a process is one of two things: a
function that can accept an input of type A, generate a (possibly
empty) bag of output values of type B, and become a possibly dif-
ferent process; or a special value, which we call halt, that is used
to denote a terminated process. Because GPM is implemented in
Nuprl, a process is a Nuprl program, i.e., an expression of Nuprl’s
programming language, an untyped A-calculus. Processes can then
be executed by interpreting them according to the evaluation rules
of Nuprl’s computation system.

The Logic of Events. The Logic of Events [8, 10], related to Lam-
port’s notion of causal order [26], was developed to reason about
events occurring in the execution of a distributed system. In the
context of this paper, an event is an abstract object corresponding
to the receipt of a message'; the message is called the primitive
information of the event. An event happens at a specific point in
space/time. The space coordinate of an event is called its location,
and the time coordinate is given by a well-founded causal ordering
on events (i.e., a temporal ordering). The Logic of Events describes

Events are formally more general than that in the sense that they might
correspond to something else than just the receipt of messages.

systems in terms of the causal relations among events and (ulti-
mately) their primitive information. It abstracts away from low-
level details, such as setting up communication channels, unless
they are essential to the protocol.

To reason about a protocol in the Logic of Events, we reason
about its possible runs. An event ordering is an abstract represen-
tation of one run of a distributed system; it is a structure consisting
of: a set of events; a function loc that associates a location with
each event; a function info that associates primitive information
with each event; and a well-founded causal ordering relation, <,
on events [26]. We express system properties as predicates on event
orderings. A system satisfies such a property if every execution sat-
isfies the predicate.

The following message sequence diagram depicts a simple
event ordering:

“ ml m2
echo™
e1 forwarg™
~ackn™
€3

Event e; corresponds to the receipt of a message with header

NN NN

echo™ by machine m1. Upon receipt of that " echo”" message,
ml forwards it to m2, which causes event ez. Upon receipt of that
“forward™ message, m2 sends an acknowledgment to m1, which
causes event esz. Events e; and es have same location, and e;
happens causally before ez, which happens causally before e3. We
write e; < ez, e2 < e3, and e; <ioc e3 (for any two events e; and
€2, €1 <1oc €2 is defined as ey < ez A loc(er) = loc(ez)).

Event Classes. A basic concept in the Logic of Events is that of
an event class [8], which effectively partitions the events of an
event ordering into those it “recognizes” and those it does not, and
associates values to the events it recognizes. They can therefore be
regarded as combinations of event recognizers and event handlers.
For example, the base class called vote’base will recognize the
arrival of any message with header “*vore®" and handle that event
by simply returning the content of the message”. Another class, call
it X, may recognize that, in the context of a particular run of some
protocol, the arrival of a ““vote”” message signifies successful
completion and will assign to such an event a value that means
“send the ‘success’ message.” X will recognize some but not all
“vote™” events; and these two classes will assign different values
to the events they both recognize. Therefore, event classes classify
events not only in terms of input messages but also in terms of
the outputs they compute from these input messages. They classify
events not only in terms of the ones they recognize but also in
terms of how they handle them. We specify systems in EventML
by defining and combining such event recognizers and handlers that
appropriately classify system events.

Event classes specify information flow in a network of reac-
tive agents by observing the information computed by the agents
when events occur—i.e., on receipt of messages. It turns out that
event classes form a monad [32] encapsulating local computations
in distributed systems. One reasons about a specification by reason-
ing about the observations made by its components. As mentioned
above, some event classes of the Logic of Events, such as the ones
described in EventML specifications, are implementable by GPM
processes. These classes can be seen as processes that aggregate
information from input messages and past observations into an in-
ternal state and compute appropriate outputs. In context, we will
use whichever terminology seems to us most intuitive (class/ob-
server/process).

NN

2In general, a base class recognizes the arrival of a particular kind of
message (identified by its header) and observes its body.
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Formally, an event class is a function whose inputs are an event
ordering and an event, and whose output is a bag (multiset) of
values (observations). If the values are of type 7', the class is called
an event class of type 7. The collection of all event classes of
type T is the type Class(7) = E0 — E — Bag(T), where
EO is the type of event orderings and E the type of events in
a given event ordering. For example, the following event class
of type Class(Loc), where Loc is the location type, recognizes
any event and observes its location: Aeo.\e.{loc(e)}. We reason
about event classes in terms of the event class relation, which
relates events, observers, and observations: we say that the event
class X observes v at event e (in an event ordering eo), and write
v € X(e), if v is a member of the bag (X eo e). Our notation
omits eo because the choice of eo is irrelevant to the present
discussions. If the bag is nonempty we say that e is an X -event.

An EventML specification describes event classes that produce
and consume messages (among other values), and especially, it de-
scribes a main class that specifies the entire information flow of
a system. Main classes observe directed messages represented by
pairs location/message. Given such a directed message (loc, msg),
the communication system attempts to deliver message msg to lo-
cation loc. This directed message can be seen as the instruction
“send message msg to location loc”. We reason about the behav-
ior of a specification based on assumptions about message delivery.
This paper assumes that messages are delivered reliably but asyn-
chronously, and may be delivered more than once.

Automation. Formally verifying distributed protocols is not trivial
and can be time consuming. However, because we are using a
tactic-based proof assistant in the style of LCF [21], there is much
room for automation. We have built two main automation tools to
assist us in proving properties of distributed systems.

From an EventML specification we automatically generate an
inductive logical form (ILF), a first order formula that characterizes
the observations made by the main class in terms of the event class
relation. It characterizes the response to any event e in terms of
observations made at some causally prior event ¢’ < e. ILFs are
the heart of our verification method, providing a powerful way to
prove program properties by induction on causal order.

Moreover, we have automated some patterns of reasoning on
state machines, because typical specifications are composed of
several small state machines.

Contributions. This paper introduces basic ideas of EventML and
shows how it can be used to define a fault-tolerant consensus
protocol (Section 2) and how one can exploit the connection to
Nuprl to prove its safety properties (Section 3) and generate a
verified implementation (Section 4).

2. A Specification of 2/3 Consensus

Consider the following problem: A system has been replicated for
fault tolerance [36]. It responds to commands identified by values
in some type Cmd, a parameter of the specification. Commands are
issued to any of the replicas, which must come to consensus on
the order in which those commands are to be performed, so that all
replicas process commands in the same order. Replicas may fail,
therefore given the FLP impossibility result [15], consensus might
never be reached. We assume that all failures are crash failures: that
is, a failed replica ceases all communication with its surroundings.
The 2/3 consensus protocol tolerates up to flrs failures (also a
parameter of the specification), by using precisely 3 * flrs + 1
replicas. An appealing feature of the protocol is that with a small
change, and using 5 * flrs + 1 replicas, it can tolerate Byzantine
failures.

Input events communicate proposals, which consist of slot num-
ber/command pairs, where slot numbers are modeled by integers:

(n,c) proposes that command c¢ be the n*" one performed. The

protocol is intended to obtain agreement, for each n, on which
command will be the n'" to be performed, and to broadcast notify
messages with those decisions to a list of clients (also a parameter
of the specification).

Each copy of the replicated system contains a module that
carries out the consensus negotiations. In this specification we
describe only those modules (which we continue to call Replicas).
To save space, we omit an EventML description of how these
consensus decisions are used. An account of that may be found
in the description of the Paxos protocol in [35].

2.1 A Top-Down Look at the Protocol

This section shows how EventML can organize a top-down de-
scription of the protocol, decomposing it to a level at which our
remaining task is to define a few event classes that act like state
machines. Section 2.2 describes one of those state machines, which
performs the key computation used to detect consensus. Section 2.3
shows how EventML defines an event class to accomplish that. Fig-
ures 1 and 2 provide the full EventML specification.

Interface. An input event to the protocol is the arrival of a message
that communicates a proposal. The header of such a message is
““propose’” and its data has type Proposal, which we declare as
follows:

|type Proposal = Int * Cmd

The data (n, c) of a ** propose™” message proposes that command
¢ be the nt" one performed. The command type is defined as a
parameter of the specification as follows:

|parameter Cmd, cmdeq Type * Cmd Deq

One subtlety: in addition to defining the type parameter Cmd, this
declaration also supplies an “equality decider”, which we call
cmdeg—an operation that determines whether two values of Cmd
are equal. The ability to compare commands is necessary to de-
cide whether or not consensus has been reached. We declare the
propose interface to the protocol as follows:

input propose Proposal

which implicitly defines the base class, called propose’base,
that detects these input events, i.e., input messages with headers
“*propose”” , and observes their data.

To characterize the top-level actors in the protocol we define the
event class Replica below. Its outputs are directed messages with
header " notify™" ; the data of such a message identifies a proposal
that has achieved consensus:

output notify Proposal

This interface definition does not declare a base class recogniz-
ing the arrival of ““notify"> messages; those events occur out-
side the system. However, it implicitly declares the two functions
notify’send and notify’broadcast, which are convenient op-
erations used to send messages. Let msg be the " notify”” mes-
sage with body p. Then the expression (notify’send [ p) is
(I, msg), the directed message instructing that msg be sent to /; and
(notify’broadcast {l1,l2,...} p) = {(l1,msg), (l2, msg), ...},
which is a bag of such instructions.

Typically, the complete interface of a system is defined in terms
of its input messages, its output messages, and its internal mes-
sages, i.e., messages that can only be produced and consumed by
the participants of the system. The internal messages exchanged by
the participants of the protocol presented in this section are as fol-
lows: ““vote”" messages, which are used by the replicas to cast their
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votes to the collection of replicas; " decided”" messages which are
used to inform the collection of replicas that consensus has been
detected on a particular proposal; and " retry’" messages which
are described below.

Replicas. The main program, SC, executes the protocol:

main SC where SC = Replica @ reps

The bag of locations reps, another parameter of the specification,
denotes the locations at which the replicas will execute. We may
think of SC as the restriction of Replica to a class that responds
only to events at the locations in reps, or that it is the result of
installing an “instance” of Replica at each of those locations. The
“@” idiom guarantees that SC will only be installed at a finite number
of locations, and is therefore implementable by a finite distributed
system.

For each n, the protocol conducts a separate election to vote
on proposals for the n'" command. We define Replica so that it
acts simply by spawning subprocesses that cast votes in these elec-
tions and identify the winners. The spawning (delegation) operator
“_>>=_"is an EventML primitive:’

class Replica = NewVoters >>= Voter ;; |

The event class NewVoters decides when to spawn a new voting
process. Voter is a higher-type function; the values it returns are
event classes that do the voting. When some NewVoters-event e
occurs and v € NewVoters(e), Replica spawns a local instance of
the class (Voter v).

By local instance we mean this: When a NewVoters-event e
occurs at location loc, the subprocess spawned acts only at loc.
The only messages it can react to are messages arriving at loc (and,
of course, only those arriving after e).

For any e there will be at most one v such that v € NewVoters(e).

So a NewVoters-event spawns only one subprocess. (Though it is
not required, we typically apply delegation only to such “singled-
valued” classes.)

A note on terminology: The specification will define several
higher-order functions, such as Voter, that return event classes. For
convenience we will use “a Voter class” or “a Voter” as a shorthand
for “an event class returned by Voter.”

NewVoters acts like a state machine. More precisely, it de-
fines a distinct state machine at each location, each reacting to
inputs at that location. Its inputs are messages either with header
““proposal”® (coming from outside the system) or with header
“vote™ (coming from within the system). If an input at location
loc is a proposal (n, c) or a vote for proposal (n,c) and if, in ad-
dition, location loc has not previously received a proposal or vote
for the n'® command, that input is a NewVoters-event; and it will
cause (NewVoters >>= Voter) to spawn a local instance of the
event class (Voter (n,c)) at location loc, which will start voting
for (n, c).

Voters. Voter classes send votes and tally the votes they receive
to determine whether some proposal has achieved consensus. We
will not allow a Voter to announce a consensus for proposal (7, ¢)
unless it has received 2 £1rs + 1 votes for (n, ¢) from 2% flrs+1
different replicas.

‘We cannot guarantee that any particular poll of the Voter classes
will achieve such a result. Accordingly, for each n we allow arbi-
trarily many do-over polls: Successive polls for slot number n are
assigned consecutive integers called rounds. A pair (n,r)—(slot
number/round number)—is called a voting round (or just round for

3 We use the symbol “>>=" because delegation is the bind operator in the
event class monad.

short). Pairs of the form ((n, r), ¢)—-(voting round/command)—
are called ballots. Thus, a Voter casts votes not merely for a par-
ticular proposal but for a particular proposal in a particular round.
Votes are pairs of the form (((n, ), ¢), loc)—(ballot/location). The
location indicates the sender of the vote. When a replica R votes,
it puts its own location in the message so that the receiver of that
vote will know whether or not R has already voted. Replicas ignore
duplicate votes. Therefore, the protocol will work even if messages
get duplicated.

Using the parallel combinator “_||_" we define the Rounds
event class in charge of doing the successive polls, and the Voter
event class, which calls its sub-component Rounds and sends noti-
fications to the clients of the system once a round achieves consen-
sus:

1

class Rounds (n,c) =
Round ((n,0),c)
|| (NewRounds n >>= Round)
class Voter (n,c) =
(Rounds (n,c) until (Notify n))
|| (Notify n) 5;

Rounds, Round, NewRounds, and Notify are also higher-order func-
tions that return event classes.

A local instance of the event class (Round ((n,7), ¢)) conducts
the voting for round (n,r) at a particular location. By definition
it will cast its vote in round (n,r) for (n,c). Therefore, the first
component of (Rounds (7, ¢)) ensures that (Voter (n, c)) votes for
proposal (n, ¢) in round (n, 0); other instances of Round, spawned
by Rounds’ second component, may cast votes for other proposals
in later rounds.

Round inputs " vote™’ messages and outputs directed messages
of various kinds: ““vote™"; " decided" ; and " retry”", an internal
message calling for a new round when a poll does not achieve
consensus. Section 2.2 provides a detailed account of Round.

(NewRounds n) recognizes those events that call for a new round
of voting for the nt" command. Thus (NewRounds m >>= Round)
spawns instances of Round as required.

(Notify n) detects the arrival of a " decided’® message with
data (n, c) indicating that consensus has been reached about the
n*" command, and sends notifications to the clients of the system
indicating that slot n has been filled with command c. For any event
classes A and B, the class (A until B) acts like A until a B-event
occurs, at which point it terminates. This allows us to terminate
any voting for n once consensus has been reached on n.

2.2 Detecting Consensus

The structure so far described is common to many consensus pro-
tocols: spawn a separate process to conduct each election; conduct
each election in a sequence of rounds that are spawned as needed.
What distinguishes one protocol from another is the algorithm that
detects consensus. (Round ((n,7), ¢)) has two components:

class Round ((n,r),c) =
Output(\loc.vote'broadcast reps (((n,r),c),loc))
|| Once(Quorum (n,r)) ;;

The first component multicasts a vote for (n, ¢) in round (n,r) to
all locations in reps and then terminates; we will not explain this
further here. The second executes the consensus-detecting process,
(Quorum (7, 7)), and terminates once it has either announced a con-
sensus or called for a new round. (Once A) is a class that acts like A
but terminates after the first A-event, i.e., it terminates as soon as A
produces something. Because there is at most one (Quorum (7, 7))-
event at any location the use of Once is logically redundant; but
it effects an optimization because it guarantees that a process is
cleaned up once it has produced an output.

2013/3/31



Figure 1 2/3 consensus: Part 1

specification two_thirds

(* Parameters ——— )

(x consensus on commands of arbitrary type Cmd with equality decider cmdeq x)
parameter Cmd, cmdeq Type * Cmd Deq

parameter flrs Int (* max number of failures *)
parameter reps Loc Bag (* locations of (3 * flrs 4+ 1) replicas *)
parameter clients Loc Bag (* locations of the clients to be notified =)

( Imported Nuprl declarations *)
import length poss—maj list—diff deq—member from—upto
(* Type definitions ———— )
type SlotNum = Int type RoundNum = Int type Proposal = SlotNum x Cmd
type VotingRound = SlotNum % RoundNum type Ballot = VotingRound * Cmd type Vote = Ballot * Loc
(= Interface *)
input propose Proposal internal vote Vote internal decided Proposal
output notify Proposal internal retry Ballot
(* Quorum: a state machine *)
(x« — filter — %)
let newvote (n,r) (((n',r"),cmd),sender) (cmds,locs) = (n,r) = (n',r') & !(degq—member (op =) sender locs);;
(* — update — =)
let addvote (((n,r),cmd),sender) (cmds,locs) = (cmd.cmds, sender.locs);;
let add-to_quorum (n,r) loc vt state = if newvote (n,r) vt state then addvote vt state else state;;
(x — output — )
let roundout loc (((n,r),cmd),sender) (cmds,locs) =
if length cmds = 2 % flrs
then let (k,cmd’) = poss—maj cmdeq (cmd.cmds) cmd in
if k=2 % flrs + 1
then decided’'broadcast reps(n, cmd’)
else { retry'send loc ((n,r+1),cmd’) }
else {} 3
let when_quorum (n,r) loc vt state = if newvote (n,r) vt state then roundout loc vt state else {} ;;
(* — state machine — x)
class QuorumState (n,r) = Memory(\loc.([].,[])., add_-to_quorum (n,r), vote'base)
class Quorum (n,r) = (when_quorum (n,r)) o (vote'base, QuorumState (n,r))

(Quorum (n,7)) produces an output as soon as it has received
votes in round (n, ) from 2 * £1rs + 1 distinct locations. If all of
them are votes for the same proposal, call it (n, d), it decides that
(n, d) has achieved consensus and sends appropriate " decided"
messages (which will be handled by Notify event classes and will
results in " notify”” messages being sent). If the votes it has re-
ceived are not unanimous then it is logically possible that, however
many more votes are tallied, no proposal will receive 2 * flrs + 1
votes on this round. (Note that if f1rs failures have occurred, no
more votes will arrive, so the Quorum cannot wait for more votes
or it might become permanently stuck.) In that case it sends a
“retry” message to call for round (n,r + 1).

That " retry™ message also tells the Voter that spawned the
Quorum how to vote in the new round. If some command d received
amajority of the 2 x f1rs + 1 votes, the Voter must vote for (n, d).
(If no command gets a majority, how it votes does not matter to the
logical correctness of the protocol.)

It is possible that a round will occur in which a Quorum at
one location detects a consensus about command n and a Quorum
at another location calls for a new round of voting about n. So
multiple ** notify”" messages may be sent about n, in a single round
or in different rounds. Section 3 describes a proof that, for any n, all
“notify"® messages about the n'* command will agree on which
command has been chosen.

2.3 Implementing Quorum

Quorum (n,r) acts like a state machine—more precisely, like a
Mealy machine: In response to inputs it may change state and

produce outputs. It is convenient to factor its definition. We first
define (QuorumState (n,r)), a Moore machine that maintains a
suitable state, i.e., the collection of votes for round (n,r) that
the process has received thus far. (Quorum (n,r)) will observe
(QuorumState (n,r)) and issue directed messages as appropriate.

EventML provides primitives for defining Moore machines. We
use the primitive Memory to define QuorumState:

class QuorumState (n,r)

Memory(\ loc . ([],[]) .

add_to_quorum (n,r)
vote'base) ;;

A (QuorumState (m,r)) Moore machine maintains a pair of
lists (cmds,locs), where cmds is a list of commands and locs
is a list of locations. The state ([c1;c2;.. ], [l1;l2;...]) means
that, in round (n,r), the state machine has thus far received a
vote from [y for ci1, a vote from [y for cz, etc. By maintaining
that location list in addition to the command list, a QuorumState
can recognize and ignore duplicates; thus, as mentioned above,
we need not assume that messages are delivered only once. In
the definition of QuorumState, the arguments to Memory have the
following meanings:

e The expression (\loc. ([1,[1)) has type Loc -> StateType. It
assigns the initial state to each location. In this case, the initial
state at any location is a pair of empty lists.

e The transition function (add_to_quorum(n,r)) has the follow-
ing type: Loc -> InputType -> StateType -> StateType. It
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Figure 2 2/3 consensus: part 2

(x¥ ———— Round ———— %)

class Round ((n,r),cmd) = Output(\loc.vote'broadcast reps (((n,r),cmd),loc)) || Once(Quorum (n,r)) ;;
(# ————————— NewRounds: a state machine —M——

(* — inputs — =)

let vote2retry loc (((n,r),cmd),sender) = {((n,r),ecmd)};;

class Roundlnfo = retry'base || (vote2retry o vote'base);;

(* — update — =)

let update_round n loc ((n’,r"),emd) round = if n = n’ & round < r' then r’ else round
(x — output — )

let when_new_round n loc ((n',r"),emd) round = if n = n" & round < r’ then {((n',r"),cmd)} else {}
(x — state machine — x)

class NewRoundsState n = Memory(\loc.0, update.round n, RoundInfo) ;;

class NewRounds n = (when_new_round n) o (RoundInfo, NewRoundsState n) ;;

(¥ ———— Voter ———— )

let decision n loc (n',c) = if n = n' then notify'broadcast clients (n,c) else {};;
class Notify n = Once((decision n) o decided’'base );;

class Rounds (n,cmd) = Round ((n,0),cmd) || (NewRounds n >>= Round);;

class Voter (n,cmd) = (Rounds (n,cmd) until (Notify n)) (Notify n);;

(¥ ————— NewVoters: a state machine ————

(* — inputs — =)

let vote2proposal loc (((n,round),cmd),sender) = {(n,cmd)}

class Proposal = propose’base || (vote2proposal o vote'base);;

(x« — filter — %)

let new_proposal (n,cmd) (max, missing) = n > max or deq—member (op =) n missing;;

(x — update — %)

let onnewpropose (n,cmd) (max, missing) =

if n> max then (n, missing ++ (from—upto (max + 1) n))

else (max, list—diff (op =) missing [n])
let update_replica (n,cmd) state = if new_proposal (n,cmd) state then onnewpropose (n,cmd) state else state
(x — output — )
let when_new_proposal loc (n,cmd) state = if new_proposal (n,cmd) state then {(n,cmd)} else {} ;;
(* — state machine — =)
class ReplicaState = Memory update_replica (\loc.(0,[])) Proposal ;;
class NewVoters = when_new_proposal o (Proposal, ReplicaState) ;;
(xk ————— Replica & Main program —— )
class Replica = NewVoters >>= Voter

main SC where SC = Replica @ reps

computes the next state from the location and value of the in-
put event and the current state. If an input vote arrives for ¢ from
loc, and loc is not listed in the current state, then add_to_quorum
returns the result of prepending c and loc, respectively, to the
components of the current state; otherwise, the current state
stays unchanged.

N

The event class vote’base recognizes input " vote™ events and
supplies their values.

N

Memory is defined so that QuorumState will recognize every " vote®
event, update its internal state, and then return (a singleton bag
containing) the value of the internal state before performing that
update. Had it been more convenient that QuorumState return the
value of the internal state affer the update we would have used,
instead of Memory, the primitive combinator State.

We define Quorum from QuorumState using the primitive com-
position combinator (£ o (X1,...,Xn)), which combines the func-
tion £ with the event classes X1, ..., Xn. This combinator behaves
as follows: for all ¢ € {1,...,n}, if the event class Xi observes
xi at event e then the event class (f o (X1,...,Xn)) observes each
value of the bag (£ loc(e) x1 ... xn)atevent e. Quorum is defined
as follows:

class Quorum (n,r) =
(when_quorum(n,r)) o (vote'base, QuorumState(n,r))

This computes the response of (Quorum (n,r)) to event e by
applying (when_quorum (n,r)), of type (Loc -> InputType ->
StateType -> OutputType Bag), to loc(e), and to the values ob-
served at e by vote’base and (QuorumState (n,r)).Only ““vote™
events will be observed by (Quorum (n,r)), but not all of them
since (wvhen_quorum (n,r)) will sometimes return an empty bag. If
an input vote arrives for ¢ from loc, and loc is listed in the current
state, then when_quorum does not output anything. Otherwise, it
calls roundout, which requires the most complex definition in the
specification:

let roundout loc (((n,r),c),sender) (cmds,locs) =
if length cmds = 2 % flrs
then let (k,c’') = poss—maj cmdeq (c.cmds) c in
if k=2 % flrs + 1
then decided’broadcast reps (n,c’)
else { retry'send loc ((n,r+1),c") }
else {} 3
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The first argument loc matches the location at which the input
event, that triggered the call to roundout, occurs—this event must
have a ““vote” message for primitive information; the second
argument (((n,r),c),sender) matches the data from the input
vote; and the third argument (cmds,locs) matches the state when
the input arrives. Therefore c.cmds, where the dot is the cons
operation on lists, is the value of the command list that results from
processing the input.

‘We can now understand the outer conditional: If its condition is
false then, even after the input event, we have not seen 2 * f1rs + 1
votes; accordingly, the input does not cause an output, SO Quorum
returns an empty bag, and the input event is not a (Quorum (n,i))-
event. Suppose now that the condition is true and consider the inner
conditional.

The poss-maj function, imported from EventML’s library (a
snapshot of the Nuprl library), implements the Boyer-Moore ma-
jority vote algorithm. In the expression

|\et (k,c') = poss—maj cmdeq (c.cmds) c |

the pair (k,c’) satisfies the following property: If there is a ma-
jority entry in the list c.cmds, c’ is its value and k is the number
of times ¢’ occurs in that list. The condition (k = 2 * flrs + 1)
therefore tests whether the vote is unanimous. If so, the function
returns a bag instructing that the choice of ¢’ be broadcast in ap-
propriate " decided”” messages; if not, it returns a bag whose sin-
gle element is an instruction to send a " retry’” message. Recall
that the declaration of " retry™” messages introduces the operation
retry’send, for constructing directed messages. The expression

retry’'send loc ((n,r+41),c") |

is the instruction to send to location loc a " retry’” message with
body ((n,r+1),c’).So Quorum sends a message to its own location,
which will be observed by NewRounds, which will spawn the round
(n,r+1); the message data directs the spawned instance of Round to
vote for ¢’ in the new round.

3. The Safety Properties of 2/3 Consensus

Now that we have specified this 2/3 consensus protocol in EventML,
we can generate a LoE specification and a GPM program that ex-
press the semantic meaning of the EventML specification in our
two models of distributed computing. We verify the correctness of
the EventML specification using the LoE specification, and we ex-
ecute it using the GPM program. This section describes the formal
verification, in the Nuprl proof assistant, of this protocol using the
LoE specification, and Section 4 below describes the process of
generating the GPM program and automatically verifying that it
implements the LoE specification.

3.1 Agreement and Validity

The basic safety properties of any consensus protocol are agree-
ment and validity. Both these properties have been formally proved
in Nuprl for the 2/3 consensus protocol of section 2. We state them
in terms of notifications. Recall that system properties are predi-
cates on event orderings; we must prove that the predicates are true
of all possible runs of the system consistent with the SC specifica-
tion.*

Agreement says that notifications never contradict one another:

4 The formal statements of these properties contain a universally quantified
variable that the notation suppresses: eo, denoting an event ordering.

Vei, ez: E.Yiocy, loce : Loc.Vn: Z.¥cy, co: Cmd.
< (notify’send locs (m,c1)) € SC(61)>
A (notify’send locz (n, c2)) € SC(e2)
= C1 = C2

Validity says that any proposal decided on must be one that was
proposed:

Ve: E. Vloc: Loc. Vv Proposal.
(notify’send loc v) € SC(e)
= |3e’ :E. e’ < e A v € propose’base(e’)

(The reader can think of |3 as a classical existential’.)

3.2 Assumptions

For every distributed system we assume that every internal or out-
put message received must have been sent by one of the agents of
the system. Formally, we make a separate assumption for each base
class that observes an internal or an output message. For example,
if v € vote’base(e), and e occurs at location loc, there must exist
some ¢’ < e such that (vote’send loc v) € Sc(e). This can be
enforced, e.g., by physical means or by message encryption.

We must also assume a constraint on parameters: reps is a bag,
without repetitions, of size 3 * flrs + 1.

3.3 Automation

To help us prove such properties of distributed systems we have
developed two main automation tools. The first one is a rewriting
tool that consists in using the Inductive Logical Forms mentioned in
Section 1 in order to prove properties by induction on causal order.
The second one consists in the automation of standard patterns of
reasoning on state machines (such as QuorumState discussed in
Section 2.3).

3.3.1 Inductive Logical Form

ILFs are declarative logical statements that precisely answer ques-
tions such as: “What led the agent at location loc; to send a vote
to the agent at location loce?”, in terms of the content of input
messages and the states of state machines. ILFs are automatically
generated from main classes using various logical simplifications,
and mainly using characterizations of the LoE combinators used
in the class. For example, one of the most simple but subtle such
characterization is the one for the LoE parallel combinator:

veEXIIY(e) < J(ve X(e) VveY(e))

It simply says that v is produced by X | | Y iff it is produced by ei-
ther one of its two components. As mentioned in footnote 5, the
“squash” operator | is used to enforce proof irrelevance. Infor-
mally, in the above formula, the use of | means that just by knowing
that X | | Y produced v, we cannot in general know whether v was
produced by X or by Y. For example if two identical replicas run
in parallel, and receive the same inputs, then for an external ob-
server there is no way to distinguish between their outputs if they
do not label them with different tags.

Given a main class X, we start from an expression of the form
v € X(e), and keep on rewriting that expression using formulas
such as the one presented above, to finally obtain a formula of
the form v € X(e) <= C, where C is a complete declarative
characterization of the outputs of X. As mentioned above we also
apply various logical simplifications to C'. Finally, we have built a

5The | type operator, called “squash”, enforces proof irrelevance, which is
necessary here because, generally, there is no constructive way to pinpoint
the exact " propose™" event that led to a notification being sent. For exam-
ple, there might have been two such proposals sent, and once we receive
them, we have no way to distinguish between them if the content of these
messages is identical.
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Figure 3 ILF instance for “*vote™" messages

V[Cmd:{T:Typel valueall-type(T)} 1. V[clients:bag(Id)]. V[cmdeq:EqDecider(Cmd)]. V[flrs:Z]. V[reps:bag(Id)].

V [f:headers_type{i:1}(Cmd)]. V[es:E0+(Message(f))]. V[e:E]. V

[d:Z]. VI[i:1d]. VIn,r:Z]. V[v:Cmd]. V[sender:Id].

(<d, i, make-Msg(‘‘vote‘‘;<<<n, r>, c>, sender>)> € main(Cmd;clients;cmdeq;flrs;reps;f) (e) ]
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V (has-es-info-type(es;e’;f;Z X Z X Cmd X Id) 4
A (header(e’) = ‘‘vote‘‘)
A (0’ = (fst(fst(fst(msgval(e’))))))
A (c’ = (snd(fst(msgval(e’)))))))
A[ (((fst(ReplicaStateFun(Cmd;f;es;e’))) < n’) 5
V (n’ € snd(ReplicaStateFun(Cmd;f;es;e’)))) .
A[(no Notify(Cmd;clients;f) n’ between e’ and e) 6
A[(((k<<n, r>, c>, sender> = <<<n’, 0>, c’>, loc(e)>) A (e =¢e’))] 7
Vv /(Fr:7Z
e’ :Cmd
((<<<n, r>, c>, sender> = <<<n’, r’>, c’’>, loc(e)>)
A (Fel:{el:E| el <loc e }
((((header(el) = ‘‘retry‘‘) A <<n’, r’>, c’’> = body(el))
V (has-es-info-type(es.e’;el;f;Z X Z X Cmd X Id) 8
A (header(el) = ‘‘vote‘)
A (0’ = (fst(fst(fst(msgval(el))))))
A (r’ = (snd(fst(fst(msgval(el))))))
A (c’?’ = (snd(fst(msgval(el)))))))

.

A (e = el)))N))

A (NewRoundsStateFun(Cmd;f;n’;es.e’;el) < r’)

proof tactic that automatically proves that this double implication
is true.

An ILF provides a characterization of all the (internal and out-
put) messages sent by a system. However, it is often useful to get
these characterizations for specific kinds of messages, for exam-
ple to answer questions such as the one presented at the beginning
of this section. Therefore, we generate instances of the ILF for all
the kinds of messages that the system outputs. For example, for Sc,
we generate characterizations of the sending of ““vote™", “retry™,
“decided™” , and *" notify’" messages.

Figure 3 shows the ILF instance for “*vote™* messages as gen-
erated by Nuprl. For space reasons, we do not show the entire ILF
generated for SC. The details of this formula are not critical for un-
derstanding the methodology described in this section. However,
let us explain, at a high level, how it characterizes the sending
of ““vote™ messages. This formula says that a vote of the form
<<n,r>,c>,sender> (where <_, > is Nuprl’s pair constructor) is
sent by SC at event e to location i (see box 1) iff:

e (box 2): the event e happens at one of the replica locations,
which we call R,

e (box 3): i is also a replica location,

e (box 4): there exists a proposal <n’,c’> that was received by
R either in a " propose™ message or in a ~vote’ message at
a prior event e’,

NN

e (box 5): the proposal <n’ ,r’> is such that n’ has never been
received by R prior to e’ (for the purpose of this discussion
there is no important distinction between ReplicaStateFun and
the event class ReplicaState, which maintains the list of slot
numbers that have been proposed so far),

e (box 6): the proposal <n’ ,r’> is such that no decision has been
made about n’ between the events e’ and e,

(box 7): finally, either <n,c> is <n’,c’> and is being voted
for at the initial round r=0 in response to the " propose™ or
“vote”” message mentioned above that led to a new Voting
process being spawned,

N

(box 8): or <n,c> comes from a ““retry™ or a " vote’ mes-
sage, and r is not the initial round, meaning that either some
replica believed that consensus could not have been reached at
round r-1 (in the case of a ““retry’” message), or R was still
working on a smaller round number when it received r (in the
case of a " vote’" message), and is now voting at round r.

Using such formulas it is then easy to trace back the outputs
of a distributed system to the states of its state machines, and
eventually to its inputs. For example, to prove the validity property
of SC we start from the characterization of " notify"" messages and

trace these messages back to ** proposals™ using the various ILF
instances.

3.3.2 State Machine Properties

As mentioned above in Section 2.3, the Memory and State EventML
keywords allow one to define Moore machines. Reasoning about
such state machines often turns out to be a large part of the ver-
ification effort of a distributed program’s correctness. Therefore,
our system provides some automation to prove four kind of local
properties of Memory and State state machines, called: invariant,
ordering, progress, and memory.

Let us informally present the meaning of each of these proper-
ties. A state machine invariant is a unary property that is true for
all possible states of the state machine. A state machine ordering
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property is a binary property that is true about all temporarily or-
dered pairs of states of the state machine. A state machine progress
property w.r.t. some predicate P is a binary property that is true
about all temporarily ordered pairs of states of the state machine,
such that P is true about at least one of the transitions made be-
tween the two states (i.e., such that some progress characterized by
P has been made between the two states). A state machine memory
property is a ternary property between an input, the current state of
the machine at the time it received this input, and a future state.
Such memory properties are used to specify that state machines
keep track in their states of some parts of the inputs they receive.

We have proved in Nuprl, by induction on causal order, that
Memory and State state machines satisfy each of these properties if,
among other things, they satisfy some transition property regarding
consecutive states (in the case of invariants, a base case is also
necessary). Therefore, to prove that a state machine X satisfies a
predicate P that is one of these four state machine properties, we
simply have to instantiate the corresponding general lemma and
prove the simpler transition property.

We have developed an annotation language to state these prop-
erties in EventML, and have developed general purpose tactics in
Nuprl that try to prove these properties automatically (and often
succeed). These tactics try various simplifications and use sim-
ple reasoners on lists, integers, etc. Let us now describe and il-
lustrate these four kinds of properties using the QuorumState and
NewRoundsState state machines. The latter is defined in Figure 2
above and keeps track of the current round number for each slot
number.

Invariant. Invariant properties of state machines are properties that
are true about all states of the state machine. A simple example of
an invariant of a QuorumState state of the form (cmds,locs) is that
locs does not contain repetitions, and cmds and locs have equal
length. Let us call that invariant quorum_inv.

Let T be a type, P be a function of type 7' — P, ie.,
a unary property on 7', where P is the proposition type. Now,
let sM be the state machine (Memory(init,transition,X)) of
type Class(T). Informally, SM satisfies the invariant property P,
i.e., at any event e the state state of SM satisfies P—we write
P[state]®, if P satisfies the following induction principle: (base-
case) the initial state satisfies P; (induction-case) at every event e,
if (1) SM observes state, (2) P[state], and (3) X observes x then
P[(transition loc(e) x state)].

We state the quorum_inv invariant in EventML as follows:

import no_repeats length
invariant quorum_inv
on (cmds,locs) in (QuorumState ni)
== no_repeats ::Loc locs
/\ length(cmds) = length(locs);;

The semantic meaning of this EventML declaration is the fol-
lowing Logic of Events formula (where | |_| | is how we display
the length function in Nuprl):

VCmd: Type.

Veo:EQ’. Vel:E.

Vcemd_num,round:Z.

Vemds:Cmd List. V1ocs:Id List.
((cmds,locs) € (QuorumState(Cmd) <cmd_num,round>) (e)
=> no_repeats(Id;locs) A (llemds|| = ||locs||))

The Nuprl tactic we have designed tries to automatically prove this
statement by unfolding QuorumState’s definition to a Memory class
and by instantiating the corresponding general lemma. It (mainly)
remains to prove that the base and induction properties are satisfied.

6n general, we write P[z;;...; xp] iff (P z7 -+ )

For our simple invariant, we have to prove the two following simple
facts:

® base-case: no_repeats(Id;[1) and | |[1I] = [I[111;

e induction-case: according to the definitions of add_to_quorum
and addvote used to define QuorumState in Figure 1, we
have to prove that (no_repeats(Id;locs) and ||cmds|| =
| |1ocs| |) implies that (no_repeats(Id;sender.locs) and
|lc.cmds|| = ||sender.locs||), provided that sender
is not already in locs (see definition of add_to_quorum and
newvote in Figure 1).

A trivial but important remark is that because we have already
proved the general principle by induction on causal order, the tactic
does not have to use induction on causal order to prove quorum_inv.
Let us provide another example regarding NewRoundsState. An
invariant of a NewRoundsState state machine is that its state is a
positive integer. We express this invariant in EventML as follows:

invariant rounds_pos on round
in (NewRoundsState n)
== 0 <= round ;;

Ordering. Ordering properties express relations between two
states at the same location. For example, if QuorumState ob-
serves (cmdsl,locs1) at e; and (cmds2,locs2)) at e2 such that
e1 <ioc €2, then cmds1 and locs1 are final segments of cmds2 and
locs2 respectively. We call that ordering property, quorum_fseg.

Let T be a type, R be a function of type ' — T —
P, i.e., a binary relation on 7. Let SM be the state machine
(Memory (init,transition,X)) of type Class(T'). Informally, SM
satisfies the ordering property R if for all events e; and e2 such
that e; <ioc €2, and for all statel and state2 observed by SM at
e1 and ey respectively, then R[statel;statel] provided that R is
a reflexive and transitive relation and every two consecutive states
are in relation w.r.t. R.

We state quorum_fseg in EventML as follows, where fseg is a
predicate available in Nuprl’s library:

import fseg
ordering quorum_fseg
on (cmdsl1,locsl) then (cmds2,locs2)
in QuorumState ni
== fseg ::Cmd cmdsl cmds2
/\ fseg ::Loc locsl locs2 ;;

Let us provide another example, regarding NewRoundsState. An
ordering progress property of NewRoundsState states is that rounds
can only increase over time. We express this property in EventML
as follows:

ordering rounds_inc on roundl then round2
in (NewRoundsState n)
== roundl <= round2 ;;

Progress. Note that at any event, a NewRoundsState state can in-
crease only if RoundInfo observes a vote or a retry for a round num-
ber strictly greater than the state. We call such a property progress,
because some progress has actually been made, i.e., the state has
changed.

Let T and U be types, R be a function of type 7" — T — P,
i.e., a binary relation on 7', and P be a function of type U — T —
IP. Let X be a class of type Class(U), and SM be the state machine
(Memory (init,transition,X)) of type Class(T). Informally, SM
satisfies the progress property R if for all statel and state2 of
types T, R[statel;state2] is true provided that there exists two

events e; and ez such that the following holds:
® 1 <ioc €2,
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e R is a transitive relation and P is decidable,

e statel and state2 are observations made by SM at e; and ez
respectively,

e R satisfies the following property: for all events e such that
X observes x at e and SM observes state at e, if P[x;state]
then R[state; transition x state], otherwise state has to be
equal to transition x state (i.e., progress can only be made
when P is satisfied), and

o there exists an event e such that e; <ioc €, € <1oc €2, SM
observes state at e, X observes x at e, and P[x;state] (i.e.,
progress has been made between e; and e2).

For example, if (NewRoundsState n) observes roundl at event
e1 and round2 at a latter event ez, such that progress has been made
between e; and ez, then roundl < round2, where our progress
property is the function:

(0,7, emd)Ar.(n=n" A r<7)

We state this property in EventML as follows:

progress rounds_strict_inc
on roundl then round2
in (NewRoundsState n)
with ((n’,round’),cmd) in RoundInfo
and round => n’ = n /\ round < round’
== roundl < round2;;

Memory. Memory properties express that state machines do not ig-
nore inputs. For example, if (NewRoundsState n) observes roundi
at event e; and round?2 at a strictly latter event e, RoundInfo ob-
serves ((n’,r’),cmd) at e;, and n = n’ then r’ <= round2. We
call that property, rounds_mem.

Let T and U be types, and R be a function of type U —
T — T — P. Let X be a class of type Class(U), and SM be the
state machine (Memory (init,transition,X)) of type Class(T).
Informally, SM satisfies the memory property R if for all events
e1 and ez such that e; <ioc e2, for all x observed by X at e,
and for all statel and state2 observed by SM at e; and ey re-
spectively, then R[x;statel;state2] is true provided that R sat-
isfies the following property: for all events e and e’ such that
e1 <ioc €, € <1oc €, and € <ioc €2, for all x1 and x2 ob-
served by X at e and e’ respectively, for all statel and state2
observed by sM at e and e’ respectively, if R[x1;statel;state2]
then R[x1;statel;transition x2 state2].

We state rounds_mem in EventML as follows:

memory rounds_mem

on roundl then round2

in (NewRoundsState n)

with ((n’,round’),cmd)
== (n = n’) => round’

in RoundInfo
<= round2

3.4 Proof of Agreement

To prove agreement we first prove several simple lemmas.

(1) In any round, each instance of Replica votes for at most one
command: This follows from the fact that a replica votes at most
once per round.

(2) Two " notify™ messages sent in the same round must be for
the same command: If at most 3 * f1rs + 1 votes can be cast, and
two different Quorum classes receive 2 * f1rs + 1 unanimous votes
from distinct voters, then both of those unanimous votes must be
for the same command.

(3) If a “" notify”” message for c and a " retry’ message for d
are sent in the same round, then ¢ = d: This is another counting

argument. If 2«x£f1rs+1 votes have been cast for ¢, then the majority
of the votes in any collection of 2 * f1rs + 1 votes (in that round)
must be for ¢; so every " retry™ will be for c.

(4) A vote for command d at round (n,j) such that j > O,
can always be traced back to a *" retry™ for d at round (n,j — 1).
(This is proven by induction on the well-founded causal ordering
of events.)

Lemma (2) leaves us with the interesting case: Suppose that
in round (n,4) some instance of Replica detects a consensus for
proposal (n,c). We must show that if ¥ > 4, then a consensus
detected in round (n, k) must also be for (n, c).

We prove that by showing something stronger: If & > 4, then
every vote in round (n, k) will be for (n, c). We prove this result
by induction on k — . If £ — ¢ = 1, it follows from lemma (4) by
appealing to lemma (3). Otherwise, it follows from lemma (4) by
appealing to the induction hypothesis on k — 1.

3.5 Proof of Validity
Validity is a corollary of the following lemma, which we prove by
induction on the causal order of events:
Ve:E.Vn:Z.Vec: Cmd. Vr: Z. Yloc: Loc.
(n, ) € decided’base(e)
(((n,r), ¢), loc) € vote’base(e)
((n,7), c) € retry’base(e)
= |Je' :E. ¢’ < e A (n,c) € propose’base(e’)

\%
\%

3.6 Proof Effort

Thanks to the rich library of definitions, facts, and proof tactics
about LoE and GPM that we developed over the past several years,
and also thanks to our new automation tools, we have specified
2/3 consensus and have completed in Nuprl the proofs of its two
safety properties in merely two days. Proving these two proper-
ties involved: automatically generating and proving 8 state machine
properties; automatically generating and proving 1 ILF and 4 in-
stances of that ILF; and interactively proving 8 other lemmas (3 of
them being trivial, and therefore candidates for future automation).

4. Correct-by-Construction Program Generation

As mentioned in Section 1, the semantic meaning of an EventML
program can be expressed by a LoE event class and by a GPM pro-
gram. We carry out our correctness proofs on the LoE description of
the main event class. In order to trust the program we run, we prove
that it implements that description, i.e., that it outputs exactly the
same observations.

The GPM program generated by EventML is a collection of
processes, represented as a function from locations to processes.
In order to generate a finite system of distributed processes, we
need to instantiate this function with a finite number of locations.
These locations can be obtained from the EventML specification.
For example, in Section 2.1, SC is declared as the Replica process
running at each location in reps.

Given an EventML specification, proving that the correspond-
ing GPM program satisfies the corresponding LoE specification is
trivial: For each EventML combinator C, there exists a correspond-
ing LoE combinator LC' and a corresponding GPM combinators
PC such that we have proved that PC implements LC'

Consider the parallel combinator. Let X; and X2 be event
classes of type 7 that are implementable by pr; and prs, respec-
tively. The LoE parallel combinator X | | X» is defined as follows:

Aeo.de.(X; eo e) + (X2 eo €)

where + is the append operation on bags. The GPM parallel com-
binator pr; | | pre is defined as follows (for simplicity, we use the
same symbol for the LoE and GPM parallel combinators):
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let pi1,p2 = sin

if halted(p;s) Ay halted(p2)

then halt

Am.let p}, out; = pi(m) in
let pj, outz = p2(m) in
let out ::= out; + outs
in (R (p}, pb), out)

Aloc. fix

else run

(pr1 loc, pre loc)

This expression defines a function that takes a location loc and
returns a process that runs p; and pz in parallel at that location.
This process is defined as a co-recursive program that maintains
a state composed of two processes: its two components. Its initial
state is (pr; loc, pre loc). If the current state of the process is the
pair (p1, p2), then if both p; and po have already halted, i.e., they
are the special process halt, then the process becomes the halted
process halt. Otherwise, the process waits for an input message,
and once it has received such a message, say m,

(1) fori € {1, 2}, it applies p; to m to obtain a new process p; and

a bag of output values out;’,

(2) it combines these bags using the append operation on bag (+) to
form the bag of output values out, and finally,

(3) it outputs out and co-recursively calls itself on the new state

(p7, p2).

The complexity of that expression and of the proof that it im-
plements X; | | X2 comes from the fact that processes can either
be of the form halt or of the form run(f). Because of the simi-
lar structure in the two expressions, it is nonetheless easy to prove
that pr; | | pre implements X; | | X2. The same is true for the other
combinators.

5. Related Work

I0A.10A[16, 17, 20, 39] is a programming/specification language
for describing asynchronous distributed systems as I/O automata
(labeled state transition systems) and stating their properties. [OA
can interact with a large range of tools such as type checkers, sim-
ulators, model checkers, theorem provers, and there is support for
synthesis of Java code [39]. Both I/O automata and event classes
can specify I/O observations of distributed systems. A major dif-
ference between |OA and the Logic of Events is that IOA is state-
based, while the Logic of Events is event-based (states are im-
plicitly maintained by recursive combinators). Our respective ap-
proaches differ in the sense that the programming/logical dualism
of ours allows us to both prove protocol properties and generate
code within the Nuprl proof/programming environment, and does
not require any translation to another language.

TLA. TLA is a temporal logic, based on first-order logic and set
theory, that “provides a mathematical foundation for describing
systems” [28]. TLA™ [13, 28, 29] is a language for specifying sys-
tems described in TLA. TLAPS “is a platform for the develop-
ment and mechanical verification of TLA™ proofs” [13]. To val-
idate proofs, TLAPS uses a collection of theorem provers, proof
assistants, SMT solvers, and decision procedures. One can use a
model checker to help catch errors before attempting to prove the
correctness of a protocol. At its current stage, TLAPS allows one to
prove safety properties (the safety property of a variant of Paxos has
been verified using TLAPS) but not liveness/non-blocking proper-

7The application of a process p to a message m is defined as follows: if
halted(p) then return (halt, {}), otherwise p is of the form run(f), and
therefore, return (f m) that computes to a pair process/bag of outputs.

ties (note that we have not yet proved such properties either). TLA™
does not perform program synthesis.

Orc. Orc [22, 23] is a programming language for structured con-
current programming. It is based on a small set of combinators to
“orchestrate the concurrent invocations of sites” [22] that perform
basic services (such as timers). Expressions in Orc are similar to
our event classes. Among other things, Orc has similar parallel and
delegation combinators and allows recursive definitions. Although,
many formal semantics of Orc have been defined, to the best of our
knowledge none of them are formalized in a theorem prover.

FVN. A similar approach to ours is the one taken by the FVN
framework [41]; their system and ours have the same general struc-
ture. They use the NDlog declarative networking language as the
bridge between high-level logical specifications and low level pro-
grams. NDlog corresponds to EventML in our framework. ND-
log programs can be translated to logical statements expressed in
PVS [40]. This would correspond to the Logic of Events part of
our framework. Using P2 [31], NDlog programs can also be com-
piled to dataflow programs. This would correspond to the level of
our General Process Model.

sel4. Our approach is also similar to the one taken by Klein et al.
to verify the sel4 microkernel [24]. In their methodology, they use
Haskell as their specification language. This roughly corresponds
to the level of abstraction of EventML in our framework, even
though they can run the Haskell code, while in our framework exe-
cuting EventML requires extracting its semantic meaning in terms
of Nuprl GPM processes. Then, they translate this code to an Is-
abelle/HOL version. They prove that this “executable specifica-
tion” refines an “abstract specification”, which corresponds to the
level of the Logic of Events. Finally, they generate by hand a C
implementation of the specification, which they translate into Is-
abelle/HOL, in which they defined a model of C, and manually
prove that this implementation refines their “executable specifica-
tion”. This corresponds to the level of our General Process Model.
Among other things, our paper shows that a similar methodology
can be used to design and implement correct fault-tolerant dis-
tributed systems.

6. Conclusion and Future Work

Our methodology scales to more complicated and subtle distributed
protocols. For examples, we have written several EventML speci-
fications of the Multi-Paxos protocol [27, 35] and proved its safety
properties to be correct in Nuprl. We are also building a generic
correct-by-construction ordered broadcast service that can switch
between various consensus protocols such as 2/3-consensus and
Paxos Synod.

In order to get efficient code, we are building, within Nuprl,
a formal tool that we have tuned to automatically optimize GPM
programs and prove that the optimized code and the non-optimized
program are bisimilar [34], using new untyped reasoning tech-
niques. We are also experimenting with a program translator to
Lisp. Using this translator, we obtain code that performs decently.

We are also building support in both EventML and Nuprl to:
(1) abstract away from implementation details such as specific data
structures, (2) automatically prove simple properties such as valid-
ity properties, (3) replay large proofs in order to support modifica-
tions to specifications.
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